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ABSTRACT 

Described is an experimental technique for providing long- 

duration pulses which can be applied to a part or all of a simple 

structure such as a beam,   plate or cylinder.    The technique employs 

essentially the familiar shock tube except that the detonation front of 

a gaseous explosive provides the shock wave.    Many pulse shapes can 

b«.- produced by placing in the tube and against the target,   layers of 

diferent materials such as styrofoam,   polyurethane,  and Mylar, 

and by sending the explosively-induced shock wave through them to 

the target.    The search for pulse shapes was mainly confined to those 

of the blast type but the generation of other types is equally feasible. 

Outlines of the theoretical treatments of four problems are 

given.    They concern the responses of (a) a clamped beam to a blast 

pulse uniformly distributed over a central length,   (b) a simply  supported 

circular plate to a blast pulse uniformly distributed over a central 

circular area,   (c) a clamped circular plate to a rectangular pulse uni- 

formly distributed over the whole plate, and (d) a clamped circular 

plate to a rectangular pulse uniformly distributed over a central circular 

area.    Analytical treatments employ the rigid-plastic theory because of 

interest in moderately large permanent deformations and relative sim- 

plicity of analysis. 

Long-duration pulses were applied to clamped beams and clamped 

circular plates,  and the permanent central displacements are correlated 

with theoretical predictions. 

A preliminary «rudy is made of the modification of the applied 

pulse due to the mobility of the target. 

Ill 



AFWL-TR-65-81 

This page Intentionally left blank. 

Iv 



CONTENTS 

SECTION 

I INTRODUCTION  1 

II EXPERIMENTS  5 

1. Long-Pn'ae Technique  5 
2. Photodiode Experiments  20 
3. Mathematical Model  25 
4. Structural Experiments  26 
5. Large Surface Loading  26 

III CLAMPED BEAM  29 

1. Introduction ,  29 
2. Mechanisms of Deformation  30 
i.         Permanent Deformations  38 
4. Results  44 
5. Conclusions  47 

IV SIMPLY SUPPORTED RIGID-PLASTIC PLATES UNDER 
BLAST LOADING  65 

1. Introduction  65 
2. Deformation Under Low Peak Pressures .   ... 66 

V CLAMPED RIGID-PLASTIC PLATES UNDER BLAST 
LOADING  7! 

1. Introduction  yj 
2. Mechanisms of Deformation  72 
3. Governing Equations  74 
4. Solution for Rectangular Pulse  7^ 
5. Conclusions  84 

6. Description of Experiments  37 
7. Experimental Results and Observations   .... go 



vn 

CONTENTS (Continued) 

CLAMPED CIRCULAR RIGID-PLASTIC PLATES 
UNDER BLAST LOADING  

1. Introduction  
2. Mechanisms of Deformation  
3. Governing Equations  
4. Solution for Rectangular Pulse  
5. Results and Conclusions  
6. Description of Experiments  
7. Experimental Results and Observations.    . 

MATHEMATICAL MODEL OF SPRING-MASS 

1. Introduction  
2. Spring-Mass System  
3. Solution of the Differential Equations .... 
4. Numerical Results and Comparisons with 

Experiments.  

Vni       DEPENDENCE OF DAMAGE ON PULSE SHAPES . 

1. Intioduction  
2. Simplest Rigid-Plastic System  
3. Rigid-PUstic Cylinder  
4. Simply Supported Circular Plate  
5. Rigid-Plastic Beams  
6. Rigid-Plastic Beams with Moving Hinges .   . 

APPENDDC A  

APPENDDC B  

REFERENCES.   .     

DISTRIBUTION      .   .       .   .         , 

97 

97 
98 
102 
107 
114 
119 
122 

129 

129 
129 
131 

132 

137 

137 
137 
141 
142 
142 
143 

149 

155 

157 

161 

■■■■ 



Fig. 2. 1 

Fig. 2.2 

Fig. 2.3 

Fig. 2.4 

Fig. 2.5 

Fig. 2. 6 

Fig. 2.7 

Fig. 2.8 

Fig. 2.9 

Fig. 2. 10 

Fig.  2. 11 

Fig.  2.12 

Fig.  2. 13 

Fig.  2. 14 

Fig.  2. 15 

Fig. 2. 16 

Fig.  2.17 

Fig.   3. 1 

Fig.   3.2    (a) 
Fig.   3.2    (b) 

ILLUSTRATIONS 

Oxyacetylene Shock Tube  6 

Oxyacetylene Shock Tube  7 

Rod-Gage Record—Oxyacetylene Ga« Pulse ... 8 

Typical Spring-Mass System  9 

Rod-Gage Records ,  II 

Rod-Gage Records  13 

Rod-Gage Records  15 

Rod-Gage Records  17 

Rod-Gage Records  19 

Experimental Arrangement—Shock Tube of 
Rectangular Cross Section  20 

Diagram of   Photodiode   Setup (during motion)     . 21 

Experimental Arrangement for Photodiode 
Measurements  22 

Experimental Arrangement for Photodiode 
Measurements  22 

Experimental Arrangement for  Photodiode 
Measurements  23 

Photodiode    Records Experimental Configura- 
tion Associated uith Fig.  2, 9(e) (Ladder has 
50 lines/inch)  24 

(x, t) Plots for Free Disk — Configuration of 
Fig.  2.9(e)  25 

Section of a Two-Unit Assembly of Shock Tube.   . 27 

Clamped Beam Problem  29 

Deformation Mechanism Diagram  39 
Defor -.»ation Mechanism Diagram  40 

Vll 

? .y 

■\- 

\i 

• 



ILLUSTRATIONS (Continued) 

Fig.   3.3    (a)    Pretiure Ratio vs.   Midapan Deformation: 
Rectangular Pulse  

7ig.  3.3    (b)    Pressure Ratio vi.   Midtpan Defromation: 
Triangular Pulse  

Fig.   3.3    (c)    Pressure Ratio v«.   Midspan Deformation: 
Exponential Pulse  

Fig.   3.4    (a)    Comparison of Pressure K'tio vs.  Midspar 
Deformations for Rectangular,   Triangular, 
and Exponential Pulses (loauing length ratio: 
one quarter)  

(b) Comparison of Pressure Racio vs.  Midspa« 
Deformations for Rectangular,   Triangular, 
and Exponential Pulses (loading length ratio: 
one half)  

(c) Comparison for Pressure Ratio vs.  Midspan 
Deformations for Rectangular,  Triangular, 
and Exponential Pulses (loading length ratio: 
iLree quarters)  

(i)    Comparison for Pressure Ratio vs.  Midspan 
Deformations for Rectangular,  Triangular, 
and Exponential Pulses (loading length ratio: 
total span)  

Fig.   3.5    (a)    Pressure Ratio vs. Lnpulse:   Rectangular 
Pulse  

(b) Pressure Ratio vs. Impulse:   Triangular 
Pulse  

(c) Pressure Ratio vs.  Impulse.   Exponential 
Puise  

Fia.   3.6    (a)    Pressure Ratio vs. Impulse:   All Pulses 
?o= ^4  

(b) Pressure Ratio vs. Impulse:   All Pulses 
to» in  

(c) Pressure .^atio vs. Impulse:   All Pulses 

5o = l  

Fig.   3.7    (a)    Pressure-Impulse Diagram:   Rectangular 
Pulse  

(b) Pressure-Impulse Diagram:   Triangular 
Pulse  

(c) Pressure-Impulse Diagram:   Exponential 
Pulse '  

48 

49 

•9 

50 

50 

51 

51 

52 

52 

53 

53 

54 

54 

55 

55 

56 

viii 



ILLUSTRATIONS (Continued) 

Fig. 3.8 (a) 

(b) 

(c) 

Fig.  3.9 

Fig. 3. 10 (a) 

(b) 

(c) 

Fig.  3. 11 

Fig. 4.1 

Fig. 4.2 

Fig. 4.3 

Fig. 4.4 

Fig. 5. 1 

Fig. 5.2 

Fig. 5.3 

Fig. 5.4 

Fig. 5.5 

Fig. 5.6 

Fig. 5.7 

Fig. 5.8 

Fig.  5.9 

Pressure-Impulse Diagram:   All Pulses 
5o = 1/4  56 
Pressure-Impulse Diagram:   AH Pulses 
5o ■ »/2  57 
Pressure-Impulse Diagram:   All Pulses 
5o = 1  57 

Pressure vs.  Deflection:   All Pulses 
?o = 1/4,   1/2, and,   1  58 

Deflection,  Loaded Length,   Pressure 
Relationship:   Rectangular Pulse     ...... 59 
Deflection,  Loaded Length,  Pressure 
Relationship:   Triangular Pulse         60 
Deflection.   Loa^-d Length,   Pressure 
Relationship:   Exponential Pulse  61 

Deflection,   Loaded Length,   Pressure 
Relationship:   All Pulses   H = 20  62 

Circular Plate Problem  65 

Tresca Yield Hexagor  65 

Plate Element  66 

Deformation Mechanism Diagram  68 

Idealized Blast Pulse  72 

Mechanism I  72 

Tresca Yield Hexagon  73 

Mechanism 2  73 

Variation of   §   with   *   During Phase  lb   .   .   . 79 

Variation of   Q   with   5   During Phase 2     .   .   . 81 

Variation of   p     and   p.   with   T .    X =2.24.   • 81 

Variation of   p     and   p.   with   T .    \ = 6.51.   . 82 

Variation of   po   and   p.   with   T .    \ = 56. 13  . 82 

ix 



ILLUSTRATIONS (Continued) 

Fig.  5.10          Relationship Between   6,  X   and   I  85 

Fig.   5. 11           Pressure-Impulse Diagram  86 

F'g.  5. 12          Experimental Arrangement  88 

Fig.  5. 13          Experimental Arrangemer    (Dismantled)  ... 89 

Fig.   5. 14          Theoretical and Experimental Results   .... 92 

Fig.  6. 1             Circular Plate Problem  98 

Fig.  6.2             Idealized Blast Plate  98 

Fig.   6.3             Tresca Yield Hexagon         .... 99 

Fig.  6.4             Mechanism 3  100 

Fig.  6.5             Deformation Mechanism Diagram  102 

Fig.   6.6 Trajectory of   (5i .   5-, .  T]) for   a = 0.438 
and   \ = 15    .   .   .   .   f  113 

Fig.  6.7 Trajectory of   (5, ,  5_ ,  r|) for   a = 0.656 
and   X = 15    .   .   .   .   T  113 

Fig.   6.8 Trajectory of   (P0 .  Pj .   P,) for   a = 0.438 
and   X - 15    ..•«  1*5 

Fig.  6.9 Trajectory of   (p    ,   p. ,   P?) for   a = 0. 656 
and   X = 15    .   . 0.   .   t   ,   r  115 

Fig.   6. 10 Variation of   p    ,   p. , md   p.   with   T   for 
a =0.438   and0X=115    .   .   .*  116 

Fig.  6.11 Variation of   p    ,  p. , and   p_   with   T   for 
a  = 0.656   and0 X =15    .   ..*  116 

Fig.  6. 12 Variation of   p    ,   p. , and  p.   with    T   for 
a =   1   and   X ^ 15.7  ...   7  117 

Fig.  6.13          Relationship Among   6,  X   and   1  118 

Fig.   6.14          Pressure-Impulse Diagram  119 



ILLUSTRATIONS (Continued) 

Fig.   6. 15           Variation of Pressure with Loaded Area   .   .   . 120 

Fig.  6. 16          Experimental Arrangement  121 

Fig.   6.17          Two Plates After Deformation  122 

Fig.   6. 18           Theoretical Curves and Experimental Points   . 125 

Fig.   7, 1             Spring-Mass System  129 

Fig.   7.2 Strens-Strain Diagram for Polyurethane 
Foam       130 

Fig.   7.3             Polyurethane Spring Properties  130 

Fig.  7.4 Experimental and Model Pulses—Configurations 
of Fig. 2.9(c)  132 

Fig.   7.5 Experimental and Mode) Pulses—Configurations 
of Fig.  2.9(a)  134 

Fig.   7.6 Experimental nnd Model Pulses—Configurations 
of Fig. 2.9(d)  134 

Fig.  8. 1             Simplest Rigid-Plastic System  137 

Fig.  8.2             Impulse-Time Diagram — Case 1  140 

Fig.  8.3             Impulse-Time Diagram —Case 2  141 

Fig.  8.4            Beam Problem  144 

Fig.  8.5             Impulse-Time Diagrams  147 

xi 



TABLES 

Table 2. 1 

Table 2.2 

Table 2. 3 

Table 2.4 

Table 2. 5 

Table 3. 1 

Table 3.2 

Table 5. 1 

Table 5. 2 

Table 5. 3 

Table 6.1 

Table 6. 2 

Table 6. 3 

Experimental Data  10 

Experimental Data  12 

Experimental Data  14 

Experimental Data  i6 

Experimental Data  18 

Lower Bounds for   \   and   p   Giving   6 > 0. 8 6. . 47 

Lower Bounds of   \   Requiring   I./I. < 1. 1   to 
MainUin   6  48 

Initial Values of   § and   T|  77 

Experimental Results  91 

Response Times of Fundamental Modes    .... 93 

Initial Values of   po ,  o. .  and  p,  108 

Experimental Results  124 

Response Times of the Fundamental Modes.   .   . 125 

xii 



SECTION   I 

INTRODUCTION 

Re'-entry vehicle« are liable to be subjected to loads ranging 

from sharp pulses,  which for structural response may be considered as 

ideal impulses,  to pulses with durations comparable to the fundamental 

elastic response times.    Short-duration loads have been applied in tests 

on actual ICBM structures [ 1. 1 - 1.4]    and in experimental and theo- 

retical studies of simplified ICBM structural components such as cylin- 

ders,  platen,  and beams [ 1. 5 - 1.25].    As a result much is known about 

response to short pulses.    Less is known about the effects of long-duration 

pulses [ 1. 26 - 1. 29] especially when these act only on parts of a struc- 

ture.    One reason for this deficiency is the dearth of meaningful experi- 

mental results and this in turn in due to the need for controlled long- 

duration loading techniques. 

In Section II is described such a technique suitable for applying 

loads to part of the surface of a structure.    The development was 

guided by the following pulse requirements: 

(1) low peak pressure*, 

(2) durations comparable with fundamental elastic response 
times, 

(3) rise time much smaller than duration, 

(4) sharp edges to the pressure distribution whenever appro- 
priate, 

(5) pulse shape control, and 

(6) adaptability for use over larger areas. 

The long-duration loading technique meets these requirements,   partly 

chosen so that pulaes of the blast type (sudden pressure rise and 

gradual decay) are included, but in addition it provides medium and high 

peak pressures,  medium-duration pulses,  and shapes other than those 

associated with blast pulses.    Section  II also includes a preliminary 

Numbers in brackets indicate references listed at the end of wiis report. 



■tudy of the effect on the pulse of the mobility of the target and it is 

concluded that the effect can definitely be first order. 

Section III is a theoretical study of the response of a clamped 

beam subjected to a blast pulse uniformly dist   buted over a central 

part of the span.    On the basis of interest in moderately large perma- 

nent deformations the rigid-plastic theory is employed.    This theory 

neglects elastic deformations and provices a relatively simple approach. 

The clamped beam problem was chosen primarily because of its sim- 

plicity and because it gives much insight into the response or deforma- 

tion mechanisms.    Some structural experiments were performed on 

clamped beams but since the reproducibility required some improve- 

ment the results are regarded as preliminary.    They indicate that the 

predicted damage is from 2 to 4 times the actual damage. 

Section IV is a theoretical sutdy of the response of a simply 

supported plate subjected to a blast pulse uniformly distributed over a 

central circular area.    The solution, which again uses the rigid-plastic 

theory,  is for low peak pressures only,  cr rather for low values of the 

ratio of the peak pressure to the static collapse pressure acting on the 

same area. 

Section V is a theoretical and experimental study of the response 

of a clamped circular plate subjected to a blast pulse over the whole 

area of the plate.    Using rigid-plastic theory a solution is presented for 

the special case of a rectangular pulse.    In the experiments,  the plates 

were subjected to blast pulses having an exponential decay.    Hence true 

correlation of theoretical and experimental damage is not achieved.    It 

is believed that the rectangular pulse among all blast pulses with the 

same pressure and impulse causes the greatest damage and the corre- 

lation showed that the predicted damage is from 3 to 7 time» the actual 

damage,   so with true correlation these values should be reduced.    This 

problem was chosen as a preliminary to that in Section VI,  where the 

plate is partially loaded, because of the complexity of these kinds of 

problems. 



Section VI is a theoretical and experimental study of the response 

01 a clamped circular plate subjected to a blast pulse over a central 

circular area of plate.    Using rigid-plastic theory a solution is 

presented for the special case of a rectangular pulse.    In the experi- 

ments,  the plates were subjected to pulses which may be considered 

approximately rectangular but having an exponential decay.    Correlation 

of the theoretical and experimental central deflections shows that the 

predicted damage overestimates over the wide range of factors from 

2 1/2 to 24.    The large factors are attributed partly to the fact that 

the experimental pulse is not rectangular and partly to the use of thin 

plates which,  due to their mobility, do not receive the full impulse. 

Section VII is a description of a simple mathematical n.odel of the 

experimental configuration of the long-duration loading technique. 

The model successfully describes the mechanics of the operation and 

forms a good basis for further refinement.    It is a valuable aid to 

experimental design towards achieving the pulses desired. 

Section  VIII is a study of the effect of pulse shape on simple rigid- 

plastic structures.    It is proved that for a certain class of structures 

the rectangular pulse,  among all pulses of equal peak pressure and 

impulse,  causes the greatest damage.    It is also indicated that the 

theorem is true for a wider class of rigid-plastic structures.    The 

importance of this study lies in the fact that it is much easier to 

analyze structures when the pulse is rectangular and the result serves 
as an upper bound on the damage acquired. 
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SECTION   II 

EXPERIMENTS 

1. Long-Pulse Technique 

In developing a technique for providing and applying long-duration 

pulses the following properties are being sought: 

(a) pulse duration about 1/2 msec, 

(b) short rise time to peak pressure, 

(c) monotonic decay following peak pressure, 

(d) uniform pressure distribution on loaded surface, 

(e) each load unit applicable to small area of structure,  and 

(f) units capable of being combined for larger surface loading. 

An experimental arrangement which provides pulses meeting the 

above requirements when they are applied to fixed targets is shown in 

Figs.  2. 1 and 2.2.    It essentially consists of a shock tube in which the 

shock is the detonation front of a 50/50 gaseous mixture of oxygen and 

acetylene.    One end of the tube is placed against a fixed target plate, 

the junction being made air-tight by means of a rubber gasket.    In the 

fixed endplate is mounted a pressure transducer.    The open end of the 

tube is sealed with a sheet of Mylar,    Inlet and outlet hoses for the gas 

mixture pass through this Mylar sheet.    The gas is detonated at the 

opposite end of the tube to the pressure transducer [2. l],   so that the 

detonation front travels towards the endplate producing an instantaneous 

rise of pressure there and a pulse duration depending on the tube length. 

Figure 2.3 shows a typical pulse obtained with this experimental arrange 

ment. 

One limitation of this arrangement is that the peak pressure is 

always a constant for a given gas mixture although this can be relaxed 

somewhat by varying the ratio of oxygen to acetylene.    Also the form 

of the decay in pressure remains the same,  its rapidity depending on 

the tube length.    Another and more important limitation for spot 
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FIG. 2.2   OXYACETYLENE  SHOCK   TUBE 

applications is that separatirn of the target and tube allows rarefaction 

waves to travel over the target surface and rapidly curtail the pulse 

duration.    The arrangement is.  however,   suitable for clamped plates 

where the plate support is an extension of the shock tube (see Section V) 

An arrangement which does not have these limitations and pro- 

vides innumerable pulse shapes consists of filling the end of the tube 

next to rhe target with various materials on which the shock wave 

from the detonated gas must act.    One such arrangement is shown 

schematically in Fig.  2.4 where alternate layers of polyurethane foam 

and Mylar form a spring-mass system.    Between the gas and the foam- 

Mylar combination is a layer of styrofoam which acts as a light piston 

^■™ , 



FIG. 2.3   ROD-GACC  RECORD — OXYACETYLENE  GAS   PULSE 

and hel;)8 to spread the pressure uniformly over the face of the target. 

By changing fhis system of masses and nonlinear springs various pulse 
shapes can be obtained. 

It is desirable that the compressed spring-mass system should 

be much more flexible than the target to minimize the disturbance of 

the uniformity of the pressure distribution as the target deforms. 

This property influenced the choice of the spring material and mass 
geometry. 

In Figs.  2. 5 to 2. 9 are displayed sequences of pulses that have 

been obtained by varying certain parameters of the spring-mass 

system of Fig.  2.4.    Attention has been focussed on obtaining pulses 

which can be approximated by rectangles,  triangles,  exponential 

curves or simple combinations of these.    Many of the pressure records 

display the oscillations of the systems but they are of such high fre- 

quency that a structure will respond only to the mean pressure. 



GAGES 

OXVACETVLENC   GAS 

STYROFOAM 

POLYUdETMANC  fOAM 
MYLAR DISKS 

FIG. 2.4   TYPICAL  SPRING-MASS SYSTEM 

Details of the pulses and config- 

uratio'ts are ihown in Tables 2. 1 

to 2. 5 on the pages opposite the 

pulse records.    The main obser- 

vation to be made is that a fairly 

high degree of control of the pulse 

shaping can be obtained with the 

spring-mass system.    Furthermore, 

the pulse shaping experiments are 

reproducible and provide a reasonably uniform pressure distribution 

over the target face.    This last point was established by using three 

rod gages,  located at the center,  a half-radius point,  and close to the 

edge of the target area. 

In addition to the cylindrical tube experiments,   spring-mass 

systems were tried in a tube of rectangular cross section.    Similar 

pulse shapes were obtained out both the reproducibility and uniformity 

of pressure distribution were found to be unsatisfactory (for example, 

peak pressure variation was + 10%).    These deficiencies are attributed 

to the cross-sectional dimensions of the tube used in the experiments. 

A rather narrow rectangle,5 inches by 1 inch, was used resulting in 

the intrusion of the edge effects (friction,   slight lack of fit of spring- 

mass system,  etc).    Should a rectangular tube with the same aspect 

ratio for the cross section be required for an experiment it is suggested 

that the scale be increased to provide 10 inches by 2 inches,   say.    Also, 

it would be desirable to provide finer tolerances by using machined 

parts.    Figure 2. 10 shows the experimental arrangement using a tube 

of rectangular cross section located vertically over three 3-foot rod 

gages. 



Spring-Mais System for Pulses of Figs.  2. 5(a) to (d) 

Configuration Diagram 

STYRorOAM 

OXYACETYLCNC 

POLYURETHANC FOAM 

MYLAR 

ROD GAGE 

Table 2. 1 — Experimental Data 

p 
I 
1 
a 
a 

DIMENSION« 

SCALES 
(aldaa or aquara grid) 

Paak 
Praaaura 

Pm2 
(lb/In*) 

(Inchaa) Uppar Traca Lowar Traca Iirpulaa, 
(Jb-aac/ln*) 

L 
1 

Lo L. ^ s Van. 

(lb/In2) 

Horii. 

(Maac) 

Vart. 

(lb/In2) 

Horic. 

(l»aac) 

• 
b 
c 
d 

32 12 2 
4 
6 
• 

9 
7 
• 
3 

1 *.** 100 

M 

1310 100 MM 
114 

1409 
1836 

0.324 
0.3S2 
0.236 
0.2TT 

Th.  Mylar dlak. ara lO-mlla thick and ara locatad al l/2.|nch can»ra. 
Impula« valuaa ara obUlnad by cruda curva (ining. »"r«- 

MatarUl 
Oanaity 

lb/ftJ 
|m/cm 

Styrofoam 
Polyuralhana 
Myl.r 

4 
» 

87.4 

0.064 
0.080 
1.4 

Observations 

I. Trend of the sequence is from an exponential curve to a triangl« 

2. Pe4.k pressures increase monotonicaiiy from about 1000 lb/ 
to 1800 lb/in^. 

■ 

3. Impulses tend to decrease. 

in 
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FIG. 2.5   ROÜ-GAGE  RECORDS 
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Spring-Mas« System for Pulses of Figs. ?..6(a) to (f) 

Configuration Diagram 

STYROrOAM 

OXYACCTYLENC 

POLYURETHANE   FOAM 

MYLAR 

ROD GAGE 

TAHOCT 

Table 2.2 — Experimental Data 

p 
a DIMENSIONS 

SCALES 
(•id«« of tqiutr* (rid) 

Paak 

(lb/la*) 

Impulaa , 
(lb-aac/U ) 

(inch«.) 
Upper Tract Lower Traca 

Si L o L • Lfn. s (U>/.^) 
Horti. 
(M«.c) 

V.rl 
(lb/in2) 

Horla. 
(caac) 

i 

12 12 
11 
10 
» 
T 

• 

\i 9 6SS 100 

SO 

1110 100 

II 

II 

»0 

1080 
1440 
IST0 
18)0 
2i20 
1140 

0.146 
0.189 
0.121 
0.149 
0.13« 
0.}18 

Tha MyUr dlaka ara 10-mlla thick «id ara localad at 1/2-inch cantart. 
impuli» valuaa ara obulnad by cruda curva (lttln|. 

MatarUl 
Oaatily 

lb/ft' im/cm 

Styrofoam 
Polyurathana 
Myl.r 

4 
5 

■T.4 

0.064 
0.080 
1.4 

Observations 

la        Tn nd of the sequence is from a slowly decaying exponential 
curve toward a rectangle followed by a rapidly decaying exponen- 
tial curve. 

2. Peak pressures increase monotonically from about 1000 lb/in2 

to 3200 lb/in2. 

3. Impulses,generally higher than those of Fig.  2. 5,tend to increase. 

12 
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FIG. 2.6    ROD-GAGE  RECORDS 
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Spring-Mati System for Pulses of Figs. 2. 7(a) to (d) 

Configuration Diagram 

irr-   ^ 

STYROfOAM 
POLVURCTMANC rOAH 

MYLAR 

MOO GAGE 

TAKOCT 

Table 2. 3   Experimental Dato 

p 
■ 
1 
• 
• 

DIMENSIONS 

SCALES 
(ildn  u( tquirr grid) 

Hrt.iurr 

(tb/ta2) 

Imp«!*« 
(Ib-l.r/tn'j 

IlKlMll 
U^ar Trsc« La*«r Tr»c» 

s L. s Lfm s V«rt. 
(Ik/la') 

Horn. 
(H..C) 

V»ft. 
(Ik/l»i) 

Horll. 

> 
b 
e 
i 

•f 
to 
H 

t 

M 

0 
1 
4 
* 

■ 
* 
4 
1 

MO 
tl 
H 

100 UfcO 100 U)0 
IJ60 
1290 
1210 

0.49» 
0.414 
0.SO4 
0.SM 

Fh. Mytor dnk» «r« 10-mlli thick and ar* locatad at 1/2-inch cantat 
tmpalaa valaaa ara ablatnad by crada carva lntinj 

MalarUI 
DaMlty 

lb/ft' fm/cm 

Styrofeam 
Palyarathana 
Mylar 

4 
1 

07.4 

0. 0M 
0.000 
1.4 

Observations 

1. Trend of the sequence is from a triangle to a rectangle followed 
by a triangle or exponential curve. 

2. Peak pressures decrease monotonically from about 1600 lb/in 
to 1200 lb/in2. 

3. Impulses in the same range as those of Fig. 2. 6 and tend to 
increase. 
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FIG. 2.7   ROD-GAGE  RECORDS 

15 

. 



Spring-M»«» System for Pulses of Figs. 2.8(a) to (f) 

Configuration Diagram 

tTTROTOAM 

I / 

OXYACtTVLCNC 

POCTUftCTHAMC  FOAM 

MYLAR 

/ROO «AM 

vh (.«• 

K 

^4 J 
TAROET 

Table 2.4 —— Experimental Data 

p 
• 
1 
1 
• 

No, el lO-mil Mylar Dtakt 
•t l/a-tack Sfacta« 

•CALKS 
(•l4*< of Mtitri grid) Raak 

Praaaara 

'"a 

Impilaa , 
(k-aac/ia*) HMhM) Upp«r Tra« Lo-»«r Trie» 

s K L. S« s Ordarid fr«n St»ro(o«mrs 

Im 

V«ft. 

pMHn 
HorU 

4>MC| 

Vat.. 

(»/la1! 

Hon.. 

k>aac) 

• 
• 
c 
t 
• 
t 

U 

H 
H 
44 

10 
(4 

H 

a « 
• 

s 
4 
1 
1 

aaaaa.ii.          JM 
aaaaaiiiiii     Ii* 
aaaaaiiiiiiinit 
utaaiin          i* 
4iiaaaiiii       'ao 
44) taaa i 11       tai 

MO 

au 

100 

M 
■* 
11 

1140 
M 

«4 

440 
It 

II 

100 

M 
H 

■1 

wa 
444 

1044 
•44 
74« 
44t 

0.4T» 
o.taa 
0.41) 
0.444 
0.SI4 
0.414 

Malarial 
Daaally 

lb/..' (m/cm 

Styra<aam 
PelyarathaM 
Mylar 

4 
4 

4T.4 

0.044 
0.0*0 
1.4 

Observations 
1. Pulse shapes do not change radically. 

2. Peak pressures increase monotonically in subsequence (a),  (b). 
(c) from about 950 lb/in2 to 1050 lb/in2 and decrease monotonically 
in subsequence (d).  (e).  (f) from about 850 lb/in2 to 650 lb/in'. 

3. Impulses remain fairly steady and are in the same range as those of 
Figs. 2.5, 2. 6 and 2.7. 

16 



"» 

■-■■-L . "_. BD 

 '"V  ♦•♦...... 

;                 "'N~N->. 

! • 

i 

■ 

FIG. 2.8   ROD-GAGE  RECORDS 

17 



•■*» ^^M ■■ 

 MM »»■■ 

Spring-Mast System for Pulses of Figs.  2.9(a) to (d) 

Configuration Diagram 
POLYUMTMANC  roAM 

MYLAR 

ROD CAGE 

TAPICET 

Table 2. 5 — Experimental Data 

• 

• 
• 

DIMENSIONS 
UaciM*) No. ef 10-mll MyUr Dick» 

M   l/i-iixh Spann« 

sc-Ai.rs 
(•M*t of ««Mr« grM) 

Crmurc 

(Ib/m2) 

(Ill-i»c/ln') Upfcr Tr»t« Lover Trac« 

S L, L. ■ta S 1   ■ 
1   m 

db/m*) 
HerU. V.n HerU. 

It 7 

M 

i 

1 |t 

1 
1   1  1  i   1                          It 
«till                     |   T 
mill           | to 
i }< i i i i         | ii 

2U 100 MO 100 M 
t«4 
i*0 
M 

0.2O6 
0.220 
0.241 
e.m 
0.218 

■MMM 
D>MUy 

a,/.,' gm/cm 

Strreloam 
PotyvrMhaiM 
MyUr 

4 
I 

•T.4 

O.OM 
o. bto 
I.« 

Observations 
1. Trend of the sequence is from a triangle to a rectangle followed 

by an exponential curve. 
2 

2. Peak pressures decrease monotonically from about 750 lb/in 
to 500 lb/in2. 

3. Impulses remain fairly steady and are about one-half of the impulses 
in Figs. 2. 5 to 2. 8 (only about half the length of gas used). 
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PIG. 2.9    ROD-GAGE   RECORDS 
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FIG. 2.10    EXPERIMENTAL   ARRANGEMENT — SHOCK   TUBE 
OF  RECTANGULAR  CROSS SECTION 

2. Photodiode Experiments 

In order to assess the effect on the pulses of the mobility of the 

target,   pulses from the fixed target configurations associatfi with 

Figs.   2. 8(d) and 2. 9{e) were applied to free disks placed against the 

end on the shock tube (Fig.   2. 11).    It is reasonable to suppose that, 

at least in the early stages of the application of the pressure, the 

fixed target pressure will be modified most if the plate is completely 

free to move away. 

20 



CYLINOE* 

^~i2ggfeBS 
LIGHT SOURCE 

OXYACCTYLtNC 

STYHOTOA* 

assgssssa 
MYLAR DISKS 

POLYURETHANE  FOAM 

LUCITE  HOO   ' 
(COATED  SLACK) 0 

PHOTO-0IODC 

FIG. 2.11    DIAGRAM OF  PHOTODIODE  SETUP  (durinj motior) 

The technique consists of obtaining an x, t plot for the disk of 

sufficient accuracy to allow the second derivative   x ,  or the accelera- 

tion, tobe computed accurately.    Then, by Newton's law   p(t) s mx 

it is possible to construct the pressure-tin.e relation.    Also,  for a pulse 

of duration   T .  it is possible to find the impulse since   I(T) = mx(T) . 

A diagram of the experimental setup to provide an accurate   x, t 

plot for the disk is shown in Fig. 2. 11.    A Incite "ladder" in a light 

magnesium frame is attached to the center of the disk by means of a 

ball Joint (Fig. 2. 12) and, as the disk r loves,  the ladder holder is 

guided along teflon-lined tracks (Figs. 2. 12,  2. 13 and 2. 14).    The 

strip of lucite has 50 or 100 lines per inch equally opaced on one surface, 

the lines being perpendicular to the direction of motion and having a 

thickness equal to the space between them.    On one side of the ladder 

is located a powerful light source while on the opposite side,   perpen- 

dicular to the ladder,  is a lucite rod.    The curved surface of the rod 

is coated black to exclude light and on the end next to the ladder is an 

array of lines with the ssme spacing and parallel to those on the ladder. 

21 



mmmmmmmmmm 

FIG. 2.12 EXPERIMENTAL ARRANGEMENT FOR PHOTODIODE MEASUREMENTS 

FIG. 2.13 EXPERIMENTAL. ARRANGEMENT FOR PHOTODIODE MEASUREMENTS 
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SHOCK 
TUBE 

FIG. 2.14    EXPERIMENTAL  ARRANGEMENT   FOR  PHOTODIODE  MEASUREMENTS 

Each line is completely opaque so that when they are exactly opposite 

each other the maximum amount of light is transmitted along the 

lucite rod; almost complete interference or darkness prevails when 

the lines are exactly opposite the spaces.    As the ladder moves across 

the end of the rod,  the intensity of light traveling down the rod varies 

and is converted into a voltage variation by means of a photodiode 

located at the other end.    The voltage variation is recorded on oscillo- 
scopes. 

Figures 2. 15(a) and (b) are oscillograms showing the voltage 

variation when a ladder having 50 lines per inch is attached to a 

1/2-inch-thick aluminum disk which receives a pulse from the con- 

figuration associated with the record in Fig.  2. 9(c).    The sweep rate 

is 20 Ksec per cm and by using appropriate delays in two dual beam 

oscilloscopes a total time coverage of 800 usec is achieved.    The 

distance traveled by the disk during the time interval between crests 

23 



4     v     V     V     V     V    /V     V     v      v     w 

FIG. 2.15   PHOTODIODE  RECORDS  EXPERIMtNTAL  CONFIGURATION  ASSOCIATED 
WITH   FIG. i(.9(e)  (Ladder hat 50 linat/inch) 

or troughs is 0. 02 inch.    Thus an (x, t) plot for the disk is obtained 

and is shown in Fig.   2. 16 as the curve labelled "experiment." 

Additional point.i can be obtained by using the trace between the crests 

and troughs.    In particular,  the upper trace in Fig.   2. 15(a) gives the 

initial motion of the disk. 

As stated earlier the second derivative of the (x, t) plot gives 

the pressure.    It was found that the method gave the initial part of 

the pressure-time diagram satisfactorily,  but around the peak pressure 

and at later times it appears that the pressure is varying quite rapidly 

and this demands greater accuracy.    However,  the ultimate accuracy 

of the method has not been reached. 

As an inverse method one can take the pressure pulse acting 

on the fixed target (rod-gage record),   idealize it,  and modify it so that 

its (x,t) plot falls on top of the experimental (x, t) curve.    In Fig.  2. 16, 

curves A and B are (x, t) plots from idealized pulses having the shapes 

shown in the figure,   impulses and peak pi assures equal to those of the 

fixed target pulse,   and a ramp pressure rise taking  100 ^sec to reach 

peak pressure.    Sue'   pulse shapes could form a reasonable starting 

point,  especially for €i»r>y times where the mobility of the target has 

least effect. 
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FIG. 2.16   (x,f) PLOTS FOR  FREE  DISK- 
CONFIGURATION OF FIG. 2.9(«) 

One point worthy of notice is that the impulse imparted to the 

free disk is considerably less than that on a fixed target.    This can be 

seen in Fig.   2. 16 by comparing the final slope of the curves A and B 

with the final average slope of the experimental curve.    From two 

photodiode experiments with the configuration of Fig.  2. 8(d) the final 

velocities corresponded to impulses of 0.208 and 0.219 lb-sec/in2 for 

a fixed target impulse of 0. 363 lb-sec/in  .    From three photodiode 

experiments with the configuration of Fig.  2.9(e) the impulses were 

0.117    0.119,  and 0. 120 lb-*ec/in    corresponding to the fixed-target 

impulse of 0. 209 lb-sec/in  .    The average ratios of free-target to 

fixed-target impulses are respectively 0. 59 ™d 0. 57 which represents 

a considerable reduction of impulse due to full mobility of the target. 

3.        Mathematical Model 

Each assemblage of layered media used to sha      pulses has f>een 

regarded as and is called a spring-mass system,  whereas it is actu.    / 

a somewhat more complicated system.    However,  a mathematical model 

waa constructed consisting of masses and linear or cubic springs which 

gives a reasonable account of the behavior of the layered media,  at least 

for the few cases studied.    The description of and results from the 

mathematical model are contained in Section VII.    The (x, t) plot of a 

freely supported disk used in the photodiode experiment with the con- 

figuration of Fig.  L.9(e) is shown in Fig.  2. 16. 

25 

I 

I 



4.        Structural Experiments 

Some experi nenU were performed in each of which a central 

length of a clamped beam was subjected to loading by placing the beam 

against the target end of the shock tube of rectangular cross section. 

The pulse applied to each beam was taken as that measured against a 

fixed target (rod-gage record) for the sam? experimental configuration. 

As was mentioned above at the end of Subsection 1,  the pulses obtained 

were neither sufficiently reproducible nor uniform.    In spite  of this a 

few beame of 6061-T6 aluminum were loaded to demonstrate the 

feasibility of the structural experiments.    The results,  which can only 

be regarded as preliminary,  indicate that the ratio of the theoretical 

to experimental final central deflections range from about 3 to 4 for 

X values (ratio of r-ak pressure to static collapse pressure) ranging 

from about 3 to 12, the theoretical deflection being that from a rec- 

tangular pulse.    In conclusion it should be stated that these experiments 

could almost certainly be improved by using wider beams and hence a 

wider «hock tube.    This remark is based on the good reproducibility 

and uniformity of pressure distribution obtained when the shock tube is 

cylindrical.    Experiments on plates are described at the ends of Sections 

V and VI. 

S.        Large Surface Loading 

For the loading of larger structural surfaces the shack-tube units, 

which can have any reasonable cross section,  can be placed side by 

side to cover the loading area.    A number of units are especially re- 

quired when the loading surface is curved to ensure that the wave 

rtrikes the surface at right angles and to ensure that the layers are 

not buckled or crumpled by being forced to occupy a smaller area. 

Figure 2. 17 «hows a section through a suggested two-unit assembly of 

shock tubes for applying a load to a cylindrical surface.    Unlike the single 

units the assembly shown would involve a detonation wave btriking the 
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GAS CHAMBERS 

SPRING MASS 
SYSTEMS 

FIG. 2.17   SECTION OF  A TWO UNIT 
ASSEMBLY  OF  SHOCK  TUBES 

styrofoam piston obliquely,  the front traveling .-.long the top of the 

styrofoam at a velocity higher than the detonation velocity.    The 

pressure pulse for this setup would f^rst be obtained from rod gages 

and possibly photodiode experiments before being applied to the 

structure. 

It should be possible to approximate a loading which varies not 

only with time but with position on the loaded surface by using an 

assemblage of shock tubes each with its own spring-mass configuration. 

A cosine distribution of loading around one-half of a cylinder appears 

quite feasible. 
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SECTION   III 

CLAMPED BEAM 

1. Introduction 

The problem treated here is the response of a clamped beam of 

rigid-plastic material subjected along a central portion of its span to 

a pressure which is constant along the beam but varying with time in 

the form of a blast pulse.    Figure 3. 1 illustrates the problem.    A 

blast pulse is here defined as a pulse with a time-dependent pressure 
satisfying 

t 

tp(t)   S   j    p(T)dT 

O 

(3.1) 

i 
P(t) 

t   ♦   t   t 

I"' a 

"i  i 
• «   4l4»-»t 

FIG. 3.1    CLAMPED BEAM PROBLEM 

The main characteristics of such a pulse are the instantaneous 

rise to peak pressure and a decay in accordance with condition (3. 1). 

When the moment-curvature relation for a beam is approximated 

by that corresponding to a beam made of a rigid-ideally plastic material, 
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no deformations and hence no curvature is possible until the bending 

momert at a cross section is equal to the fully plastic moment,  where- 

upon the curvature becomes unbounded.    This property determines 

failure in rigid-plastic structures by means of mechanisms. 

In the Semiannual Technical Report No.   1 it was shown that the 

clamped beam can fail in one of four types of mechanisms.    The param- 

eters determining the initial mechanism are the peak pressure of the 

pulse and the loaded length of the beam.    In the following section the 

equations of motion am* their solutions are presented for each mecha- 

nism.    Two of these mechanisms are the subject of a paper by M. 

Conroy [ 3. l].    Although the work primarily concerns yearns of infinite 

length,  its application for a clamped beam can easily be made. 

Section III considers the deformations caused by three types 

of blast pulses:   rectangular,  triangular and exponential.    A derivation 

of formulas for the deformed shape of the beam is presented only for 

the case of a rectangular pulse.    Formulas for the midspan deflections 

are contained in Appendix A.    For the rectangular pulse only,  formulas 

for the deformed shape are contained in Appendix B.    The variation of 

the midspan deflection   with peak pressure,  impulse and loaded length 

for all three pulses are shown in Figs.  3. 3 to 3. 11. 

Mechanisms of Deformation 2. 

(a)      Mechanism 1 

Peak pressure»,    p     , which are slightly above the static 

collapse pressure   p    ,  cause small inertia forces and the beam deforms 

in the static collapse mechanism.    The cross sections of the beam at 

the supports and at  midspan   carry a fully plastic moment,    M    , 

and the resulting motion of each half-beam is a rotation as a rigid body 

about the supports.   The corresponding velocity distribution along a 

half-beam ,  0 & x  & (, .  ia 

y(x,t)   •   üü(tMl-x) (3.2) 



where   U)(t)    is the angular velocity about the ends.    The equation of 
motion can readily be written in the form 

6M p 
uu   = o' s 

ml rs 
(3.3) 

where   p^   is the static collapse pressure given by 

4M 

<   So<2-50) 
(3.4) 

and   m   is the mass per anit length of beam. 

The equilibrium eqiation for a length   x   of the ha If-beam 
(0   « x « O   is 

X Xl 
M   =   Mo -/* f{p-my)dx'dx 

o o 

When   y ,  found by differentiating (3.2) and using the 

result (3.3) for   i ,  is substituted in (3. 5) and the integration performed. 

(3.5) provides the following relations for the bending moment 

(3.5) 

M 
nr 

M 

1 ♦   ^(3?2-?3)-^-  ( ii 
Ps      2?    -5 o     5o 

i+^(3e2^3).iE(^.) 

0 * ? r   ? 
0 

80 « ? * 1 

(3.6) 

The conditions which ensure no violation of the yield 
condition, | M| s M    ,  are now stated. 

From expressions (3. 6) it can be shown that a necessary 
and sufficient condition for a maximum moment at midspan is 

JL s       3V2-V 
Ps       ^-^-^ 

T0  *   1  - l/yr= .433 

Ps     T^rrrPi 
I. »i • i/yr 

(3.7) 
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Similarly   a minimum moment will occur at the support, 

that is at   ( a x/i ■ I ,  if 

rB 'O 

.'3.0) 

^   * 3{^ 
2-?, 

?o.2/3 

TAB condition» (3. 7) and (3. 8) are also sufficient for the 

18 

respectively. 

moment to decrease monotonically for   0  i ? i §     and   §    « ^ s 1 

The loading range for this mechanism represented I y 

> = P    / p     can then be written a.» rm r8 

1   s X   s \ 

where 

xi = 3v2-v 

5o .   1/2 

5o . 1/2 

(3.9) 

Mechanism 1 applies to any type of loading whereas the 

other three mecha-iisms require the restriction (3. 1) of a blast load. 

Mechanis     4a     I     2  1/2 

For the case waere the leading acts over more than half 

the span and   X. > X . , the yie)d condition is violated in the neighborhood 

of   ' s 0 .    This suggests a mechanism of deformation which retains 

the plastic hinges at the supports but has two plastic hinges which 

travel towards the center.    The decreasing central section of the beam 

will translate downward while the outrjr portions rotate as rigid bodies 
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about the support«!.    After the moving hinge« meet at the center the 

beam will deform according to mechanism 1. 

Denoting the position of the moving hinge by   x  (t) ,  the 

velocity distribution meeting the above description is 

0   ^ x   s x 

y(x,t) 

y   (t) {-Z—lj) 
o 

X       S   X    S {, 
o 

(3.10) 

The equations of motion for the half beam are 

my 

™ (t - xo)2 i   =  jf (a - xo) (2o a - xo) - 2Mo 

where   ID  = 'yQ/{l - xo)   is the angular velocity of the outer portions 
of the beam. 

(3.11) 

(3.12) 

Integrating (3. 11) and (3. 12),  using the initial conditions 

y(x, 0) = y(x, 0) = 0   yields the following two equations for   y     and   x 
' o ( 

I(t)dt (3.13) 

a-x/ 
12M t 

(3.14) 

where 

Kt) =  J    p(T)d' 

By substituting the velocity field (3. 10) in the moment 

expression (3. 5) and carrying cut the integration the moment distri- 

bution ig found to be 
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where 

M 

2     mw M   = M., - f (x-x/ - ^ c; 

^•^^»(»«-••«^-^«P 

0  a x  i x 

x    < x  ^ a o 

a  s x  i ^ 

(3.15) 

3        2 3 2 
9 ■ S   -3xt-3xx    +6xxi+2x    - 3x   t 

Using (3. 15) it can be shown that the yield condition will 

not be violated so long as the pulse obeys the condition (3. 1) and 

X * p    /p     is bounded by the values   X,   and   X9 ; that is 

Xj i x « x2 

where 

50 .   1/2 

and   X.   is given by (3.9). 

(c)       Mechanism 2b      g     s  1/2 

When the loaded length is less than the half span and 

X > X.   the yield condition is violated at the supports.    A mechanism 

of deformation is thus considered which has a plastic hinge at mid- 

span and two hinges which travel towards the supports.    The only 

motion is t'hat of the inner portion of the half beam,    0  ^ x £ x. , 

which rotates a» a rigid body about the moving hinge at   x = x  (t) . 

After the moving hinges reach the supports the structure will deform 

according to mechanism 1. 
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In accordance with the above motion,  the velocity distri- 

bution is 

Y (x, t) = 

y0(t) (i -^- )        0 sx * xj 

X.     S   X   4 / 

where   y     is the velocity at the center of the beam. 

The momentum equations for the half-beam are 

(3.17) 

m dt(xlyo>   =   2ap (3.18) 

d  .   2 •   %     ,2 
m"aF(xi yo) =3a p+ 12M

( (3.19) 

With the initial conditions of zero displacement and velocity 

the solution of (3. 18) and (3. 19) is 

4a2 I2(t) 

12M mt + 3a ml(t) o ' ' 

(3.20) 

1 
3a       ^o1 

(3.21) 

This mechanism was investigated in [ 3. l] and it was found 

that the yield condition will not be violated PO long as (3. 1) is satisfied 

and 

a 
(3.22) 

Hence 

In (3.22),    I(t)/t ►p       as   t—►  0,   so that   p     s 1?,M  /a' 
m mo 

\ j   s \   * X? 
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ii 

where 
ill (3.23) 

and   X x   is given by (3.9) 

(d)       Mechaniam 3 

For •ufficiently high pressures such that   > > X2 t 

mechanism 2 violates the yield condition either at the supports (if 

e     v 1/2)   or at mid-span (if   C    s 1/2).    This suggests a mechanism 
o • 

of deformation In which moving plastic hinges are formed on both 

■Ides of the loading boundary, x = a .    The hinge at   x = xo  and undei 

the loaded segment of the beam moves towards   mldspan while the 

other at   x = x.   moves towards the support.    If the support receives 

the approaching hinge first,  the structure enters mechanism 2a, 

whereas if the mid-span receives the other approaching hinge first, 

the structure enters mechanism 2b. 

The motion of the half beam is as follows:   the inner 

segment.    0 s x < x     translates downward while the mldsectlon, 

x    s x & x. ,  rotates about the outer hinge,    x. .    The velocity field 
o 1 

can therefore be written as 

y(x, t) 
x. - x 

o    Xj    xo 

0  & x  & x o 

X       ^   X    & X 1 
(3.24) 

X.     s   X    «<, 

The momentum equations for the half-beam are 
t I 

j ap(T)dT   = J   mydx 

and 
J   {2M0 + p^dT  * J mxydx 
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with the solution 

m y j   I(T)d' (3.25) 

12M t   ,,, 

«0 = > - <-r^''/2 

12M t   ,,, 

(3.26) 

(3.27) 

In [ 3. 1] it is shown that the yield condition will not be 

violated if the loading is a blast pulse satisfying (3. 1) and 

2-^ 
X^  3(-rJ2) 

^o 

X.3?o<2-V 

50
5  1/2 

50 >  1/2 

(3.28) 

(i-?er 

To fin- the initial locations of  x,   and   x.   set   I = p   t 
1 2 rm 

in (3.26) and (3.27) which is approximately true for small t .    Then 

x_(0)   =   x    + (i2M  /p    ) 2'   ' o     '        o rm' 

x^O)   =   xo - (12Mo/pm) 

1/2 

1/2 

Hence as   \ m   or   p      increases indefinitely the initial 
positions of   x,   and   x.   move closer to   x    ,   coinciding with   x 

l c o o 
for an ideal impulse. 

(e)      Summary of Mechanisms 

The results obtained for the modes of failure giving 

dependence upon dimensio..less peak pressure and loaded length are 
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•hown in Fig.  3.2.    For convenience,    \.   and   X,   are given below. 

*3?0(2.?o)/[3?o(2.?o).2] i/2  ^    < , 

3(2-?o)/[3(2.50)-4] 0 < §      «1/2 o 

^2 = 
^o^-^^^o» 

3(2-5  )? '      ^o"o 

1/2  « ?0  *  1 

0 <?o  s  1/2 

Once a blast pulse is known its peak pressure and the loaded 

length of beam can be plotted on Fig.  3.2 to give the initial mechanism. 

Knowing this^   ih? analysis can proceed directly towards obtaining 
permanent deformations. 

3.        Permanent Deformations 

(a)       Introduction 

In this Section the permanent deformations are considered 

for three blast pulses:   rectangular,  triangular and exponential.    These 

particular pulses   need only   two parameters for their complete 

description.    The parameters chosen are the peak pressure,    pr 

and the total impulse per unit beam length,    1. ,  defined as 
m 

7 P(t)dt 

Since the method of solution is identical for all three 

loadings,  expressions are derived for the final deformed shape due to 

a rectangular pulse causing initial deformation by mechanism 2a.    For 

the other initial mechanisms only the results are given and they may be 

found in Appendix B.    The central deflection formulas for all three 

pulses are contained in Appendix A. 
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FIG. 3.2(o)    DEFORMATION MECHANISM DIAGRAM 
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(b) Rectangular Pulse 

The loading under comideration is given by 

{: 
m Ü   -.  t    ■- t 

t > t 

where 

o 1  rm 

A special feature associated with a rectangular pulse is 

that all plastic hinges are stationary while it is acting on the beam. 

This simplifies the analysis since the quantity   I(t) ,  appearing in the 

equations of Secticr 111-2, canbe replaced by the constant   I    . 

The derivation of expressions for the final deformed shape 
is confined,  for simplicity,  to the initial mechanism 2a.     For the 

remaniing initial mechanisms the expressions are listed in Appendix B. 

Mechanism 2a \l< X i\2 1/2 * ?     a 1 
^o 

The expressions for the final shape of the half beam will 

be quite different on either side of the initial hinge position x = x (0) 

for two reasons. Firstly, a discontinuity of slope at x = x (0) is 

created during phase 1 because a rectangular pulse causes the hinge 

to remain stationary. Secondly, during phase 2 the hinge initially at 

x = xo(0) travels through the region 0 « x s x (0) toward the center 
of the beam. 

During phase   I,  the equation of motion in the recion 

0  s x  i xo(0)   is   my = p      which upon integrating twice between   t = 0 
and   t = to = I/p       yields 

y(x.t  ) = r/2mp o 1 *: m 0 s x  sx  (0)      (3.29) o ' 
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Th« portion o£ b«am   xo(0) s x c t   rotates about the «upport as a 
rigid body.    Hence 

y(x.to)   »   (^/2mpm)U-x)/lt-xo(0)]     xo[0)*xil       (3.30) 

During  phase 2 let the time be   T when the moving hinge 

reaches I point in the segment   0 « x « xJO) .    The point moves at 

a constant velocity   I/m   during the >ime   T -t     after which it moves 
o 

as part ol the rigid portion routing about the support and ior a time 

tj - T , t j   denoting the end of  phase 2.    Now the equations of motion 

for the parts on either side of   x = xo  are   yo. I/m   and   mR-x )3o&/3 

-2Mo   from which  i0 
s -6Mo/I(t-xo)  and   (t-x)2 - U-xo(0)]2 = 

6MO(T - to)/I .    The velocity of points on the rigid rotating portion is 

y = Ul-x)/m{l'Xo).    Hence the deflections which occur during   phase 2 
are. by integration of velocities. 

i       i       u 

i i_ 
m ^Ht-tJ* 

/dx 
: ■ 

x  (t-> Xo) 

=   I^[(t-x)2 -   l-*o{0)   ' +x(4-x)] /6mM 

0 < x  sxo(0)      (3.31) 

and 

yO^.tj) - y(x, to)   = 

t    0      xro^-oJ 

■   I|«0W* (t-x)/«mM       x(0)«x«t        (3.32) 



Figures 3.4(a) to (d) show the same curves as those of Figs. 

3. 3(a) to (c) only they have been regrouped.    For a given loaded length 

the   K   versus   v curve for each of the three types of pulse are shown 

■ ide by side.    Again regarding the impulse as the same for each type 

of pulse,   Figs.   3.4(a) to (d) show that for a given value of   V.   the 

central deflections are greatest when the pulse shape »j, rectangular 

and least when it is exponential.    For low values of   \   the spread of 

6   is quite large whereas, as expected, for high values of   V.   the spread 

is small.    The lattar observation is of course due to each pulse tending 

toward an ideal impulse. 

Figures 3. 5(a) to (c) give the same «nformation as that in 

Figs.  3. 3(a) to (c) but in a form convenient for studying the variation 

of  X   with the impulse   Tj .    They are essentially pressure-impulse 

diagrams (p-I diagrams),each curve showing how the pressure and 

impulse must vary to achieve a given central deflection   6 .    It can 

be seen that above certain values of   \   the peak pressure can be varied 

significantly with very little change of impulse required to maintain   6 

(see Conclusion 4). 

Figures 3. 6(a) to (c) show the same curves as those of Figs.   3, 5(a) 

to (b) only they are regrouped according to loaded length so that the 

effect of the pulse shape may be seen more clearly.    For any fixed 

peak pressure,  or   \   value,  the impulse required to produce % given 

6  is least when the pulse is rectangular and greatest when it is expo- 

nential.    The differences are most pronounced when   \   is low, especially 
in the range    1 < \  < 2 . 

Figures 3. 7(a) to (c) are essentially another form of pressure- 

impulse diagram (p-I diagram).    The impulse   Ij   has been rendered 

dimensionless by dividing by   I. , which is the ideal impulse required 

to give the same central deflection as   Ij .    Consequently all the curvei 

have a vertical asymptote through   Ij/I. = I.    For any given central 

deflection   6   the curves show the relationship between   K   and   I ./I   . 

The curves are of course,   similar to those of Fig».   3. 5(a) to (c). 
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Figure» 3.8(a) to (c) ihow the «ame curves as those in Figs. 

3, 7(a) to (c) but they are regrouped according to loaded length to 

bring out the effect of the pulse shapes.    They are similar to those 

of Figs.   3. 6(a) to (c). 

Figure 3.9 shows the relationship between the peak pressure 

and the central deflection by means of the parameters   JJ.   and   v . 

This is an alternate way of representing the information in Figs.   3. 3(a) 

to (c) to give the peak pressure directly instead of from   \ = p    /p    . rm  rs 

Figures 3. 10(a) to (c) show the relationship between the central 

deflection   6   and the loaded length   a   by means of the parameters   v 

and   50   with each curve representing a constant peak pressure charac- 

terized bv the parameter   p .    A vertical line drawn through some 

chosen value of   50   intersects the   JA   curve for the peak pressure of 

interest.    Then,  for the impulse of interest the central deflection can 

be calculated from the ordinate value of   v .    Figures 3. 10 can there- 

fore be regarded as design curves for clamped beams of rigid-plastic 

material.    Where the   \x   curves intersect the horizontal axis   v = 0 

gives an idea of the loaded length below which no deflection occurs. 

For example,  if  jx = 10   more than one-fifth of the span must be loaded 

to give a permanent central deflection.    Now in this region elastic effects 

become important and so it is probable that one-fifth is a lower bound 

of the fraction of span that must be loaded to give a permanent deflection . 

If a beam is subjected to a pulse with a shape that can be approximated 

by a rectangular,  triangular or exponential shape of the same impulse 

and peak pressure then,  for each impulse and central deflection ,  v is 

determined.    A horizontal line through this value of   v cuts   \i   curves 

which give the relationship between the peak pressure and loaded length 

to maintain the central deflection (regard   [i   curves as contours).    The 

loaded length must always be greater than the value at the intersection 

of the horizontal line through   v with the curve   H1 = CD   which represents 

the ideal impulse case. 
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Figure 3. 11 ihows the curvea   jx = 20  for each type of pulsi« 

plotted in the   v,   ?o   plane and show«,  for a given   ?     ,  how the shape 

effect« the final deflection when the peak pressure and impulse remain 
fixed. 

s. Conclusions 

From the information given in Figs.   3. 3 to 3, 11 the following 
conclusions can be drawn. 

(1) For a given impulse   Ij   and loaded length   50 ,  the central 
deflection increases monotonically with pressure   p     (or \), 
and becomes ?, maximum when the pressure is infinite,  that 
is,  when the given impulse is applied as an ideal impulse. 
This can be seen best in Figs.   3. S to 3. 8. 

(2) For a given impulse   Ij ,   Table 3. 1 shows approximate 
values of   \ ,  corresponding to pulse shape and loaded 
length   ?0 , above which over 80 percent of the maximum 
central deflection (the deflection   bi   when   Ij   is ideal, 
i.e.,    Ij = ^ ) is obtained.    Below the listed values of   X. 
the decrease of   6   with   \   is quite pronounced.    This 
behavior can be observed best in Figa.  3. 3 and 3. 4.    In 
Table 3. 1 seme lower bound values of   \i   are also listed. 

Table   3. 1 

LOWER BOUNDS FOR   X   AND   p   GIVING   6 > 0.8 6. 

^o 
Rectangle Triangle Exponential 

K ^ \ >* \ P 

1/4 

1/2 

3/4 

1 

9 

5 

4 

4 

85 

26 

17 

16 

11 

6 
ii 

5 

100 

32 

21 

20 

15 

9 

8 

8 

140 
48 

34 

32 

(3)       The effec   of pulse shapes on the   midspan   deflection   6 
when the peak pressure   pm ,   impulse   12   and the loaded 
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lengtti ratio   '     are given can be aeen in Figi.   3.4 and 3.9. 
Rectangular piAses cause the greatest   midspan   deflection 
and the exponential pulsej cause the least. 

(4)       For a given midspan   deflection   6,  as the pressure ratio 
K   decreases from infinity of some value   V^. the deflection 
6  is maintained with less than a 10 percent increase in 
impulae over the ideal impulse (I < L < 1. I   for   KL < X   < 00). 
Valuea of   X.L   obtainable from Fig.   3. 7 or 3.8 are shown 
in Table 3.2 for the three types of pulses and for   ?0 = 1/4, 
1/2, and   1 .    For values of  \   below   ^   a aignificant 
increase in impulse is required to maintain   6,  especially 
in the range   1 < X < 2 . 

Table   3.2 

LOWER BOUNDS OF   \   REQUIRING 
Ij/I   <   1. 1   TO MAINTAIN   6 

^o 

V 

Rectangle Triangle Exponential 

1/4 

1/2 

1    . 

8 

1 

4 

11 

7 

6 

18 

10 

9 

004 006 012 016 020 

l\i <,i   4..»   11 

FIG. 3.3(o)   PRESSURE   RATIO  v.. MIDSPAN DEFORMATIONS:   RECTANGULAR  PULSE 
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FIG . 3.3(b)   PRESSURE  RATIO  v.. MIDSPAN  DEFORMATIONS:   TRIANGULAR PULSE 

FIG. 3.3(c)   PRESSURE  RATIO v. MIDSPAN DEFORMATIONS:   EXPONENTIAL  PULSE 

49 



. 

p—i—^—i—I—r 

—'"L, 

004 006 012 016 

r«- 
Tf^ 

020 

FIG. 3.4(o) COMPARISON OF PRESSURE RATIO v.. MIDSPAN DEFORMATIONS 
FOR RECTANGULAR, TRIANGULAR, AND EXPONENTIAL PULSES 
Loading length ratio:   on« quarter 
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FIG 3.4(b) COMPARISON OF PRESSURE RATIO vi. MIDSPAN DEFORMATIONS 
FOR RECTANGULAR, TRIANGULAR, AND EXPONENTIAL PULSES 
Loading length ratio:   on« half 
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020 

FIG. 3.4(c)   COMPARISON  FOR  PRESSURE  RATIO  v..  MIDSPAN DEFORMATIONS 
FOR  RECTANGULAR,   TRIANGULAR,  AND  EXPONENTIAL  PULSES 
Loading length ratio:   three quarters 

020 

FIG. 3.4(d)   COMPARISON  FOR  PRESSURE  RATIO  v«.  MIDSPAN  DEFORMATIONS 
FOR  RECTANGULAR,   TRIANGULAR,  AND  EXPONENTIAL  PULSES 
Loading length ratio:   to^al «pan 
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FIG. 3.5(a)     PRESSURE  RATIO v.. IMPULSE:  RECTANGULAR   PULSE 

M| •" 

FIG. 3.5(b)     PRESSURE  RATIO v.. IMPULSE:  TRIANGULAR  PULSE 
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FIG. 3.5(c)     PRESSURE  RATIO v». IMPULSE:   EXPONENTIAL  PULSE 
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FIG. 3.6(a)    PRESSURE  RATIO v.. IMPULSE:  ALL  PULSES £, - '4 
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FIG. 3.7(a)     PRESSURE-IMPULSE  DIAGRAM:  RECTANGULAR   PULSE 

ie 41' —r i   i   i —1    I    1 T^ 
16 jl _ 
14 

12 il 
p 

'o 

1 

^ ,0 T \ _ 
8 :u \ 

_ 

6 

4 
:^ 

^ ̂ 1 \ 

i 
9 

i :     i     i 

- 

2 
i   1   "— ̂ ^ 

10     I.I     L2    I.S     W     IS    1.6     1.7     IB     IS   2.0 

FIG. 3.7(b)     PRESSURE-IMPULSE  DIAGRAM:  TRIANGULAR  PULSE 
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FIG. 3.7(c)     PRESSURE-IMPULSE  DIAGRAM:  EXPONENTIAL  PULSE 

FIG. 3.8(o)     PRESSURE-IMPULSE  DIAGRAM:  ALL  PULSES £0  = V4 
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FIG. 3.8(b)     PRESSURE-IMPULSE  DIAGRAM:  ALL  PULSES f0  - H 

FIG. 3.8(c)     PRESSURE-IMPULSE  DIAGRAM:  ALL  PULSES f0  -  1 
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FIG. 3.10(b)    DEFLECTION,   LOADED LENGTH,    PRESSURE   RELATIONSHIP: 
TRIANGULAR  PULSE 
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FIG. 3.10(c)   DEFLECTION,  LOADED  LENGTH,  PRESSURE  RELATIONSHIP: 
EXPONENTIAL  PULSE 
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NOMENCLATURE 

a load half length 

I impulse at time   t < t 

I total impulse 

I ideal impulse 

t half span 

m mass per unit length 

M bending moment 

M fully plastic moment 
o 

p pressure 

p peak pressure of pulse 
m 

p static collapse pressure 

t time 

t I./p    •  pulse duration 
o 1     m 

t. ,  t? phase change times 

x distance coordinate 

x   , x. positions of plastic hinges 

y deflection 

V central deflection 
'o 
6 final central deflection 

6. final central deflection due to  I. 

m     s 
\    ,  \- mechanism bounds on \ 

2 u p   t   /M 
m ?  7 

v 6M  m/lH* 
o        i 

5 *U 

T time variable 

U) angular velocity 
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SECTION   IV 

SIMPLY  SUPPORTED RIGID-PLASTIC PLATES 
UNDER BLAST LOADING 

1,        Introduction 

A simply  supported circular plate of rigid-plastic material 

subjected to a blast load of low peak pressure acting on a central 

circular ar'*a is analyzed in tklfl section (Fig.  4. I).    The pressure 

is assumed to rise instantaneously to its peak pressure   p       and there- 

after to decay monotonically.    Only one deformation mechanism is 

investigated,   namely,  that corresponding to static collapse.    Conse- 

quently,   only the response of the plate to low peak pressures is 

presented below. 

Yielding is assumed to occur in bending according to the Trcsca 

yield condition and the associated flow rule (Fig.  4.2) [4. l],  membrane 

action being neglected.    In Fig. 4.2,    Mr   and   Mg   are the radial and 

circumferential components of bending moment.    kr   and   k.  are the 

corresponding components of rate of curvature.   Positive bending 

moments and shear force   Q   are shown in Fig.  4.3. 
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FIG. 4.1    CIRCULAR   PLATE 
PROBLEM 

FIG. 4.2   TRESCA  YIELD 
HEXAGON 
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FIG. 4.3   PLATE   ELEMENT 

Deformation Under Low Pea'- Pret lures 

The deformation mechanism is assumed that of static collapse, 

namely, 
w(r.t)   =   W(t){l-r/R) (4.1) 

where   R   is the plate radius.    Deflection formula (4. 1) describes a 

deformation in which, at any instant,  the plate is a shallow cone. 

According to (4. 1) the rates of curvature are 

=   0 and Kft =   - w,, r        W 'Rr (4.2) K    = - w r rr Kg =   - wr/r  =   W/Rr 

The flow rule as described by Fig.  4.2 and results (4. 2) dictate 

that the plate is in the plastic regime AB.    In fact,  at the plate center 

MA = M    = M    which corresponds to the regime A; at the support M   =0 
D        ^ o r 

which corresponds to regime B.    Thus the bending moments corres- 

ponding to Eq.  (4.2) are 

M8   =  Mo    and      0 « Mr  s M0 (4.3) 

where   M     i> the fully plastic moment per unit length of cross section. 

With the aid of Hg.  4. 1 the equation of motion can be derived in 

the form 

M. - ^■(rMr)   =   r(p-mw)rdr (4.4) 

where   m   is the mas^ per unit area of plate. 



Integrating Eq.   (4.4) using formulas (4. 1) and (4. 3) yieldB 

W   =    12M   (X - O/mR' (4.5) 

In Eq.   (4.5),    X = p/p     where   p     is the pressure required to 
B o 

cause static collapse and is [4.2] 

p     =   6Mo/R
2a2(3-2a) (4.6) 

a being the iatio   a/R . 

Now Eq.   (4. 5) is analogous to Eq.   (3. 3) for the clamped beam 

subjected to low pressures.    Thus,  Section 111-2(1) can be taken over 

to complete the discussion on the simply  supported plate. 

By successive integrations of (4.5),  the velocity and displacement 

of the plate center are 

.2 
W   =    12M   (I - I  )/p mR 

O 6 6 

W   =    12M  (A - A   )/p mR O s       s 

(4.7) 

(4.8) 

where 

Kt) = jp(T)dT     .      Is 

=Jl(T)dT    .       AB    =   PB 

(t)  = v 

t2/2 

Motion ceases when   W(t) = 0 ,  at time   t = tf ,   eay.    Then from 

(4.7)   tf  is  determined by   I(tf) = pBtf .    Consequently the maximum 

deflection is    W(t{) , found by substituting   t = tf   in (4.8). 
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For each   a . the peak load (lepresented nondimensionally as 

X      = P    /p  )   h** ^n upper bound   \     such that when it is exceeded, m m      s 1 
the mechanism (4. 1) does not apply because the yield condition is 

violated.    Determining   X .    so that (4. 3) is satisfied leads to the 

following range for   X       corresponding to mechanism (4. 1) 

1«X    «X.   =  2a2(3-2a)/l2oM3-2a)-l] m       i 

1 tX     SX.   =   (3 -2a)/(3 - 4a) m       i 

The curves (4.9) are plotted in Fig.  4.4. 

1/2   ^a^l 

0 s a < 1/2 

(4.9) 

50 I 1 1 1 T 1   I i i 
4.) — — 

9 ••■■■■ "A 
30 

X 
20 — 

XS 
^ 
/s x,    - 

10 

a 1 1 1 1 1 -iU i    i 
0     0 I 05 

a • o/R 
o«s 10 

•*-«*«•-I* 

FIG. 4.4   DL-FORMATION MECHANISM DIAGRAM 

For peak pressures of blast pulses such that the value of   \   lies 

in the range    1 < X   s X ,   the permanent central deflection is given by 

Wf=   l2M0(ArAi)/pimR (4. 10) 

where    W£ = W(tf) ,  Af = A(tf),  and t£ = I(tf)/pg = If/P8 •    This result 

is exactly analogous to entire deformation by mechanism 1 for clamped 

beams  (Section III). 
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NOMENCLATURE 

radius of loading 

A * I(T)dT 

Af A(t ) 

PBt2/2 A. 
I impulse 

h I{tf) 

l* P.1 

m mass per unit area 

Mr.   Me components of moment 

Mo fully plastic moment 

P pressure 

Pm peak pressure 

Ps static collapse pressure 

r radial component 

R radius of plate 

t time 

'f rime when motion ceaies 

m deflection 

w central deflection 

W£ final central deflection 

a a/R 
e circumferential coordinate 

Hr' Ke components of curvature 

X P/Ps 

xl an upper bound of K 

\ 
m Pm'P. 
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SECTION   V 

CLAMPED RIGID-PLASTIC PLATES UNDER BLAST LOADING 

A theoretical study is made of clamped circular plates of rigid- 

plastic material subjected to blast loading uniformly distributed over 

the surface.    The dependence of the permanent central deflection on 

pressure and impulse is obtained when the blast pulse is taken as a 

rectangular pulse.    Experiments are described and the permanent 

central vlefiections obtained are correlated with the theoretical pre- 

dictions. 

1. Introduction 

The problem treated is the response of a clamped circular plate 

subjected to a suddenly applied pressure uniformly distributed over 

the whole of one side of the plate.    The pressure is assumed high 

enough or held on the plate long enough to produce moderately large 

plastic deformations.    Although the governing equations are derived 

for a general pressure-time relationship they are solved for the 

simplest case; that of a pressure which is held constant for a time and 

then suddenly released (a rectangular pulse).    It is the variation of the 

permanent central deflection with pressure and impulse (area under 

pressure-time curve) that constitutes the principal result of interest. 

To simplify the analysis the plate material is assumed to be rigid- 

perfect ly plas'.ic in behavior obeying the Tresca yield condition and the 

associated flow rule.    Only the bending action of the plate is taken into 

account. * 

The response of a clamped circular rigid-plastic plate to a 

uniformly distributed ideal impulse was found by Wang and Hopkins [ 5. l] 

Their method of solution,  established continuity and jump conditions, 

and nomenclature are employed here.     Wang [5.2]  obtained the response 

to an ideal impulse for simply   supported plates.    Hopkins and Prager, 

[ 5. 3] solved the problem similar to one presented here but for simply 

supported plates and their results a/e used later to assess the effect 

of the boundary conditions. 
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2. Mechanisms of Deformation 

A blast pulse may be idealized to that shown in Fig.  5. 1 with an 

instantaneous rise to the peak pressure   p       followed by a continuous 

monotonic decay.    This property will be used later.    If the peak pressure 

is only s'ightly greater than the static collapse pressure   p     it is reason- 

able to expect the dynamic mode of collapse to be similar because the 

inertia forces are still small.    In [5.4] it is shown that the static collapse 

pressure is 

P.   =   6Mo/r. (5. 1) 

where   M     is the fully plastic moment per unit length and   r     is a 

certain radius determined by the equation 

5 + ln[R/r  )2 --   3(R/r  )2 
(5.2) 

where   R   is the radius of the plate.    In fact,  the solution of (5.2) is 

ri/R » 0.73. 

Figure 5.2 shows the mechanism of deformation called mechanism 1, 

corresponding to peak pressures in excess of   p     but below a pressure   p. 

tobe determined.    The radius   r.(t)   replaces   r    .    At the plate center 

the plastic regime is   A   in Fig.   5.3 where   M = N = M    ,    M   and   N 

being the radial and circumferential components of bending moment 

(positive moments causing tension on the underside of the plate). 

P. 

P. 

Ä    AB     8     BC     C 

»  «•«•-tt «*-«•«•«« 

FIG. 5.1    IDEALIZED  BLAST  PULSE PIG. 5.2   MECHANISM   I 
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At   r = r^t)   and   r = R   the regimes are   B   and   C   while in the regions 

0  $  r   s rjlt)   and   r^t)  s r  i  R   they are   AB   and   BC.    A velocity 

field which satisfies the flow rule, boundary conditions and the appro- 

priate continuity and discontinuity conditions (5. l)  is 

w     = Wt 

with 

VCl-Or/rj) 

VOlnR/r 

I/o   =   tnR/rj + 1 

0  s r  « rjit) 

r^t)  s  r   s R 
(5.3) 

(5.4) 

In (5. 3), w is the plate deflection, V is the velocity of the plate center 

and the subscript t denotes partial differentiation. The initial condition 

of the plate at rest may be expressed by   V(0) = 0 . 

The upper bound   p.    of the peak pressure   p      is that pressure 1 m r 

which causes at the plate center an inflection point in the bending 

moment diagram for the radial component,  that is   d M/dr2 = 0   at 

r = 0 .    The inequality pm < pj   prevents violation of the yield condition 

at the plate center.    This suggests that whenever the peak pressure 

exceeds   Pj  a central region   0  $ r s ro(t) < r^t) of the plate acquires 

a uniform velocity.    This mechanism,  called mechanism 2,  is shown in 

Fig.   5. 4 with the plastic regimes indicated and hap the following velocity 
field (5. i] 

V 0   *  r   s r   (t) 

wt  =   V(l-0(r-ro)/r1) ro{t)  s r  « r^t) 

Vatn(R/T) r^t)  ^  r   s  R 
(5.5) 

0   r    r0(i)   r^f) 

tC i 
AB BC 

FIG. 5.3   TRESCA YIELD HEXAGON FIG. 5.4   MECHANISM  2 
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where 
1/0   = tnR/r, + (1 -r/r.) (5.6) 1 o     i 

By taking the blast pulse in the form of Fig.   5   1 the value of 

r   (t)   is a maximum at time   t = 0 and thereafter decreases to zero. o 
During the remaining time the plate deforms in accordance with 

mechanism 1. 

3.        Governing Equations 

Independent of mechanisms the equation of motion is 

N - (rM)r   = J (p - mwtt)rdr (5.7) 

A subscript   r   indicates partial differentiation with respect to   r . 

(1)       Mechanism 2 

When the peak pressure is large enough to cause deforma- 

tion by mechanism 2 (p     > p.)   the acceleration to be substituted in 7 ml 
(5. 7) is obtained by differentiating (5. 5) with respect to time.    The 

circumferential component of the bending moment   N   is eliminated 

by using the yield condition (Fig.  5. 3).    Due to the three properties 

M = N = 0ln0«r<ro,    M(r1, t) = 0 ,  and   M(R, t) = - M0 , 

carrying out the integration in (5. 7) provides the following three 

equations. 

V'   =   Xe  ^/2 

fV 
V '(?+r|) nl 2?(3-3TI + r)Z) + T\ (6>8 jy + 3^)]  - V? 'rfl ?(6-8T1+3n2)+ rtfl -n )(4-3TI)] 

-VTi'Ti2(25(3-2n) + Ti(4-3Ti)]     =    Ue      "      m (3-3 TI + T!2) - l] e25(? + n) 
(5.9) 

V'(? + Ti)l3c2?-3-2?(3-3Ti+3n2-r?fl-V?/[3e2?-3-2f|3.r2(l-T1)(3-2T1)} 

- 2?2(3-6T1+6r2-21VJl|-VT1'[3e2?-3-2? (3-3T1
2+2T1

3) - 6*2(1-T/J] 

2^.-?>    2E ,   2' 2 =    l3Xe      *      (e^.l)/2-(l+?)]e   -C + Tir 
(5.10) 
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The new variables that have been introduced in the derivation of (S. 8), 

(5. 9) and (5. 10) are defined by [ 5. l] 

?  =   tnO/pj)       Ti   =   1 - 0o/p1        Pj = Tj/R 

po = ro/R        X = P^a     ^s3^"«1^,)      Pg = rs/R 

Also,  the primes indicate differentiation with respect to the variable 
T ' where 

T'   =   12M t/mR2 

o 

The value of   r    ,  and hence   p     and   ?    ,   is the solution of Eq.   (5.2) 
8 8 8 

while the static collapse pressure   p     is given by (5. 1). 

(2)       Mechanism 1 

When the value of   X = p/p     falls in the range   1 s X «X. 
8 1 

vvhere   Xj = P./p     deformation occurs by means of mechanism 1.    The 

governing equations can be found by substituting in (5. 7) the accelera- 

tions found by differentiating (5. 3) with respect to time and carrying 

out the integration noting that   M(r.,t) = 0   and   M(R, t) = - M    . 

Alternatively,  they can be found by setting   r\ = l(p    = 0)   and   r ' = 0 

in Eqs.   (5. 9) and (5. 10).    Performing either of these operations yields 

V'^t 1)(2?+ 1) - V?'?  =   [Xe    ~8   ' - lle2?(?+l)2 (5.11) 

V,(?+l)(3e2?-3-4?)-V?/(3e2?-3-6?-2e2) = [3xe      *"' (e2?.l)/2 

- (i+;)]e2?(? + i)2 

(5.12) 
M 

Whenever   V ' = Xc       /2   an inflection point in the bending moment 

diagram for   M   occurs at the plate center which,  for pulses of the 

type shown in Fig.   5. 1,  occurs immediately.    This condition give« 

K,   where   X, = P„/p, • 
i I m      s 
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4.        Solution for Rectangular Pulse 

(1)       Mechanism 2        X. < X 

Specializing to a rectangular pulse a solution of Eqs. 

(5.8),   (5.9) and (5. 10) it obtained if it is atisumed that   =   and   r\   are 

constants while the load is acting.    This means that while   p   is constant, 

r     and   r.   are constants.    This phase of motion will be called phase  la. 

Setting   ? ' = TI' = 0   in (5. 9) and (5. 10), and substituting   V '  from (5. 0) 

in (5.9) and (5. 10) gives 

2(?+n)   =   Xe       s Ti   (Z-n) (5.13) 

ZfS+iiHl + S)   =   Xe 
2(?   -?) 

( 3e2?(?- I + TI) + «a-bn+6^-2T1
3) + 3(l-r1)] 

(5. 14) 

The lower bound   X .    of   X   may be found by substituting 

n * l(p    s 0)   in (5. 13) and (5. 14).    Doing this gives 

25s 2? Xje     •=2(5+l)e^ 

where   % is determined by the equation 

(5.15) 

3?e2?  =   1 (5. J6) 

From (5. 15) and (5. 16).   k. ■ 1.991   and   ? = 0. 2163 (pj = 0. 805). 

For a given value of   X   such that   X > X.   Eqs.   (5. 13) and 

(5. 14) give the initial values of   f  and   r| .    Some numerical valuer 

are shown in Table 5. 1. 

Let the pulse end at time   t = t     or when   T ' -- T   '.    If r o o 
the velocity of the plate center at this time be denoted by   Vn ,  integra- 

tion of Eq.   (5. 8) gives 
u 

2f 
Vn   =   1/2 Xe o T   '  =   I/m o 

where   I = pt     is the impulse, o 

76 



Table   5. 1 

INITIAL VALUES OF   ?  AND   r] 

Mechanism \ {(0| 
.(0, ,/»' 'J0) 

1. 1 .302 1.0 .739 0 
1.2 .290 1.0 .748 0 
1.3 .279 1.0 .756 0 

1 1.4 .268 1.0 .764 0 
1.6 .248 1.0 .780 0 
1.8 .232 1.0 .793 0 
l-2 ♦ .224 1.0 .800 0 
1.998 .2163 1.0 .805 0 

2.0 .216 .998 .806 .001 
2.24 .2 .883 .819 .096 
3.80 . 14 .569 .869 .375 

2 6.51 . 10 .395 .905 .547 
9.48 .08 .313 .923 .634 

15.71 .06 .233 .942 .722 
32.53 .04 . 156 .961 .811 
56.13 .03 . 116 .970 .858 

Value of   X, • 

Now   V = pt/m ,  so by integration,  the central deflection 
6      o{ the plate at time   t = t     is 

2 7     7 2? 
6     =   I  /2mp =  (rR^/12mM  )/Xe     s 

(5.17) 

When   t > to ,  no pressure acts on the plate so that   \ = 0 

and hence from Eq.   (5. 8)   V' = 0 .    This means that the central region 

of the plate,    0 s r s ro(t)   moves at a constant velocity.    It is evident 

from (5. 9) and (5. 10) that   $ and   r can no longer be treated as constants. 

Introducing a dimensioniess time    T = 12M  (t-t   )/mR2V    = 12M  (t-t  )/IR2 
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Eqt.   (5. 9) and (5. 10) become 

i^t   8 i + TiCl-n^-Sn)] +T1
/l25(3.2T1) + 71(4-3n)]=   J'Sl+rflrf 

(5.18) 

f'l3e2?.3-25|3-2n2(l-ii)(3.2T1)|  -2?2(3-6TI +6^-2^)] 

+ T1'l3e2?-3-25(3-3Ti2+2T1
3) -b^fl-n)2]    =   e2?(?+n)2 (?+1) 

(5. 19) 

where now the primes denote differentiation with respect to   - .    In 

(5. 8),   (5. 9) and (5. 10) derivative» are with respect to   T ' (dr ' = V dT ). 

This phase of the motion described by Eqs.   (5. 18) and (5. 19),   called 

here phase lb,  is analogous to the first phase of motion in the impulse 

problem [5. l],  except that the initial values of   % and   r, are   £'" 

from Eqs.   (5. 13) and (5. 14) Instead of   § = 1   and   - - 0 

ends when   T\* l(p    ■ 0). 

(0) 

Phase  lb 

An outline of the method used to solve Eqs. (5. 18) and (5. 19), 

which is essentially the same as that used in [ 5. l], follows immediately. 

From (5. 18) and (5. 19) 

d^/dn = -P^.riJ/Q^.n) 

where 

P<;.r,) = 3(1+2?+2?2.e2?) + T1 [ r2(4-3Ti)(?+!) - 4?2(T1
2-3T1 +3)] 

Q(?. r ) = 3(1+2?+ 2?2-e25) + n [ T1
2(4-3T, )(1 -TI ) + ? r,2(6-8r +3T,2)-3f 2(4-6^ +4^-^)] 

<0'   and   nW   are Let   d?/dr = -P(?(0>. r1
<0))/Q(?(0>,   v^) = mo .  where 

determined from (5. 13) and (5. 14) and depend only on   \ .    Choose a new 

value of   - ,   say   ;       slightly greater than   %       ; this corresponds to the 

assumption that   r.   decreases in   phase lb.    Then the new value of   - , 

say   r(1^ ,   is determined by   H      • »1      ♦ Ä       - C     l/«o •    Now find a 

new value for the ratio   d?/dr   from   -P(?^, n    l/Q(?*   i »I     I = mi • 

Continue this process until   r = 1 t  when the plastic hinge circle reaches 

the center and   phase lb terminates.    The remaining deformation occurs 

78 



in mechanis.T, 1.    Figure 5. 5 shows the    ? - T| trajectories obtained by 

this procedure for eight values of   \ .    To find the time at the end of 

phase   lb first find the function   ?'(§ , r )   using (5. 18) and (5. 19).    Then 

the numerical value of   " ' *       is    ? ' (?      »  v      ).    Now find the time 
(1)      JO) increment from   TX*' - T'"' s (5       - ?       )/?        .    Continue this process 

along ji   % - T\   trajectory until   t) = 1 .    The sum of the time increments 

th<;n gives    f.    corresponding to the duration of phase  lb. 

0 0 1 0.2 0 3        04 0 5        0 6        0 7 0 8 0.9        10 

FIG. 5.5   VARIATION OF  f WITH  r, DURING PHASE   lb 

If   6.   is the deflection of the plate center at the end of 

phase 1 it is obtained from the equation 

6.  - 6„   "   vJti  - t  ) = I^-r./lZmM 1 o o    1        o I O (5.20) 

in which   6      is given by (5. 17). 

The final phase of the mot;on,  called phase 2,   is governed 

by Eqs.   (5. 9) and (5. 10) with   n = 1 ,   r' = 0   and   \ = 0 .    With these 

special values and retention of the dimensionless time variable   T  used 
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in  phase lb Eqs.   (5. 9) and (5. 10) become 

C'(§+1)(2?+ D-CI'?  =   -(?+ l)2e25 (5.21) 

r'{?+ l)(3e2?-3-4?) - C?'(Se25-3-6?-2?2) = -(§ + l)V? (5.22) 

where   C = v  v    •    Equations (5. 21) and (5. 22) can be derived directly 

by «ubstitutiig the velocity fiel-l defined by (5. 3) and (5.4) in the equation 

of motion (5. 7). 

From (5.21) and (5.22) 

CM^expf-/ (HK? 1 (5.23) 
?1+1 L  '    4 + 7?+2r-3e<:5  J 

in which   ?.    is the value of   §   at the end of phase lb. 

Motion ceases when   Q = 0   and this occurs when   § = ?2 2; 0.478 

which is the solution of the equation 

4 + 75 +2?2 - 3e2§= 0 

Figure 5. 6 shows the variation of   Q with   % . 

Let   jj   be the value of   T when motion ceases.    Then 

h '2        j*     7 
(5.24) 

Finally,  let the central deflection when   T = T2(t=t2) be   62 • 

Then 

A        ^      -    IR 
62 ' 61   "   TIM, J 12mMo    y    e2^(?+l)(4+7? + 2r-3e': 

T
l '1 

'5) 

(5.25) 
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FIG. 5.6   VARIATION OF  C WITH  f DURING PHASE  2 

Figures 5.7,  5.8 and 5.9 show the variation of   p    and 

p.   with   T   for   \   equal to 2.24,   6. 51 and 56. 13 respectively. 

i o 

0 8- 

0 6 - 

0.4   - 

0.2  - 

1 I      1 1            1            1 I 1             1 I 
X>2.24 

^ 

PHASE 

DUACC     In 
lb 

, DU A er *> 

— 

A 1 1 1      1 1 I 1           <            !            <           ,        1 
0 01 02        03 04    ^ 05   T' 06 07 08        09 .0   * 1. 

FIG. 5.7   VARIATION OF p0 AND p,   WITH  r.   A . 2.24 
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X • 6 SI 

0 • - 
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0.4 

0.2   - 

T r 

PHASE 2 

O.I     tf 0.2       0 3       0.4        OS    '   0.6       07        0.8        0.9        I.O     rU 

FIG. 5.8   VARIATION  OF p0 AND p,   WITH  r.    A = 6.51 

The value of p is almost constant during phase 2. As \ increases 

the diagrams become progressively stronger in resemblance to that 

for an ideal impulse (see Fig.   3 of [ 5. l]). 

06 

i r 
X ■ 56 13 

PHASE 2—- 

J L 
0 To    01        0*        03       04        OS T|,0.6       0 7        0 8        09        10      * I.I 

FIG. 5.9   VARIATION OF p0 AND p]   WITH  r,    A  .  56.13 
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(2)       Mechanism 1 1 < \   « X. 

When the constant pressure lies between   p     and   p.    the 

equations governing the motion during   phase  la can be obtained by 

substituting in (5.9) and (5. 10) the special values   ^ = I ,    r ' = 0   and 

§ ' = 0 .    These substitution» give 

V'(2? + 1)   =   [Xe - l]e^(5+ 1 ) (5.26) 

V' 
7f 2^     "5)     ?l» 7- 

(3e^-3-4?) = [3Xe (e^5-l)/2 - (! + l)]c   ' (?+1)      (5.27) 

where the prime denotes differentiation with respect to   T ' .    Equations 

(5.26) and (5. 27) also result when the velocity field defined by (5. 3) 

and (5.4) is substituted in the equation of motion (5. 7) and use is made 

of the properties   M(r.,t) = 0   and   M(R, t) = -M    . 

Combining Ejqs.   (5.26) and (5.27) to eliminate   V'   provides 

the following equation which determines    %  once   X   is given (by choosing 

Z's   and finding   X's   a   X - §  curve can easily be obtained): 

[3Xe     8        (e^- l)/2 - (§+ 1)](2?+1) = [\e      8 l](3e£5-3-4§ 

(5.28) 

Knowing   5   from (5.28) the velocity of the center of the 

plate by integration of (5.26) is 

r 2(V?) 1      21 
«   U« -  l]e   M?+  1)17(2?+ 1 ) (5.29) 

The central deflection of the plate at time   t = t     is r o 

6_ = 
mR 

T2M- J V(T )dT   - zzxr [ 1 ■   m rn 1 —L—z 
o 0 Xe     s (2ff+l)>e 

(5.30) 
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Phase 2 is essentially the same as the   phase 2 described 

earlier when it followed a   phase 1 deformation according to mecha- 

nism 2. 

From (5.29) , 

2I_ 
m [1- 

Xe 

1 
•]( 

+1 
?rj *irn 

Now set   C = V/V     as was done earlier.    Then   C and 

f"   - T    (where now   *.=?    =2/Xe    ■ because there is no   phase lb) 

are given by (5. 23) and (5.24), and in place of (5.25), the central 

deflection   6,   when motion ceases is given by 
'z 

[1- 

(5.31) 

2   2 

V6i -TZMO ^7TrJ    (?Fr;    j e^(? + i)(4+7?+2^.3e^ 
31 

In (5.31),    6. = 6    (no phase lb) which is given by formula (5.30).    Also, 

1 
5,    is the solution of Eq.   (5.28). 

5. Conclusions 

Figure 5. 10 shows the relationship among the final central 

deflection   6,  the impulse per unit area   I   and the pressure   pm   in 

nondimensional    form for both the clamped and simply supported 

plates.    Ths curve for the clamped plates is obtainable from formulas 

(5. 17),   (5.20) and (5.25) fo»-   \ > Xl Z Z   and from formulas (5.30) and 

(5.3r. for   1 < X * X. .    That for the simply  supported plates is obtain- 

able from the results in [ 5. 3].    In using Fig.  5. 10 it should be noted 
2 2 

that   p    = 6M  /r     for the clamped plates and   p^ = 6M  /R     for the 
's OS SO 

simply  supported plates.    The static collapse pressure for the former 

is 1.875 times thit for the latter. 
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FIG. 5,10   RELATIONSHIP BETWEEN S, A AND I 

Figure 5. 11 shows the relationship that; must exist between the 

pressure and impulse to provide a given central deflection of a clamped 

plate.    (The corresponding curve for a simply  supported plate lies 

almost on top of the shown curve. )   In other words,  points on the curve 

define a family of rectangular pulses each member of which produces 

the same central deflection of a clamped plate.    The coordinates of 

Fig.   5.11 have been rendered   nondimensional  by using   \ and   I. , 

the latter being the ideal impulse which causes the same central de- 

flection as the rectangular pulses.    In fact,    6 = 0. 07 I?R2/mM    [ 5. l], 
2   2 i o 

and   6 = vl R  /mMo   where   v is obtainable from Fig.  5. 10 (v cepends 
f-n   X ). 
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FIG. 5.11    PRESSURE-IMPULSE  DIAGRAM 

From Figs.   5. 10 and 5. 11 the following conclusions can be drawn: 

1. For a given impulse, the central deflection   6 increases 
with the pressure   p,^   becoming a maximum when the 
pressure is infinite,that is, when the given impvise is 
applied as an ideal impulse.    This can be seen in Fig.   5. 10 
for both clamped and simply  supported plates by fixing   I , 
varying   \ and observing   v . 

2. Again for a given impulse, consideration of how   6  increases 
with   X  in Fig.  5. 10 reveals that for clamped and simply 
supported plates respectively ever 85% and 90% of the maxi- 
mum central deflection (6 for impulse   10 are obtained when- 
ever the pressure is greater than six times the static 
collapse pressure, that is, whenever   \ > 6 .    Below this 
value of   X  the decrease of   6 with   X  is quite pronounced. 

3. For a given central deflection   6,  Fig.  5. 11 shows that as 
the pressure is decreased from infinity to a value corres- 
ponding to about   X= 6   the increase in irr.nulse, over the 
ideal impulse,  necessary to maintain the given deflection 
6 is less than 7%.    (1  < I/Ij < 1. 07   for   6 <  X < CO )   A 
large increase in impulse is required to maintain   6  as 
X  decreases further,  especially in the range   1 < X  <   2 . 
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4. In comparing the effect of the boundary conditions the 
static collapse pressure for clamped and simply  supported 
edges are in the ratio 1.875 : 1 .    From the results of 
[5. 1,   5.2] the ratio of ideal impulses to achieve the same 
central deflection is 1.34 : 1 .    This latter ratio is the 
minimum value for rectangular pulses for all values of 

1 > 1   which implies considerable strengthening due to 
clamping the edges. 

6. Description of Experiments 

Circular plates of 6061-T651 aluminum and of various thicknesses 

ranging from 3/16 inch to 3/8 inch,  clamped at either 8 inches or  12 

inches diameter, were subjected to the same type of pulse generated 

in an oxyacetylene shock tube 32 inches long and having the same 

internal diameter as the supports.    The experimental arrangement is 

shown assembled in Fig.   5. 12 and dismantled in Fig.   5. 13.    Thick 

steel annular supports provided clamping against rotation only, a 

spacer keeping their distance apart slightly greater than the plate 

thickness.    Apart from circumferential membrane forces and unavoid- 

able frictional effects the plate material was allowed to displace freely 

inwards during deformation.    To ensure good clamping the overall 

diameters of the plates tested were 9 1/2 and 15 inches but to minimize 

the build-up of membrane forces they were slotted radilly at 1/2-inch 

intervals around the rim.    The length of the 1 lots were such that their 

ends did not pass over the support circle during deformation.    Gas 

seals of heavy silicon grease were provided at the junctions of the upper 

steel support with both the plate and the shock tube to reduce to rare- 

faction of the applied shock wave due to relief of pressure at the junctions. 

The pulse,  shown in Fig.  2.4, was taken to be that recorded under 

a similar configuration by a rod gage and is therefore the pressure 

acting on a fixed target.    This implies the assumption that the modifi- 

cation of the pulse due to plate motion is small.    The peak pressure 

p       is obtained from the pressure record of Fig.  2. 4 by extrapolating 

smoothly the mean pressure curve back to the starting time.    This 
2 results in a peak pressure of   p     ■ 1440 lb/in .    Now the mean pressure 
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FIG. 5.12   EXPERIMENTAL  ARRANGEMENT 

curve is fitted by the equation   p = p    e"8t   to find   s .    By integration, 

I = P-/8   an<l hence the impulse (area under pressure-time curve) is 
2 known.    The value of the impulse is   I = 0.335 lb-sec/in   . 
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FIG. 5.13   EXPERIMENTAL ARRANGEMENT  (DISMANTLED) 

Tensile tests performed with the Instron machine on standard 

ASTM specimens taken with and across the direction of rolling of the 

plate material provided stress-strain diagram» from which the yield 

stress was determined.    The yield stress is here defined as the stress 

at the point of intersection of the straight line approximations to the 

elastic and strain-hardening portions of the stress-strain diagram.    An 

average of the yield stresses obtained from specimens with and across 

the rolling direction was taken.    The plate material,  6061-T651 

aluminum,  was chosen because it exhibits only slight strain-hardening 

and is insensitive to strain rate. 

After the blast loading tests the permanent central deflections 

6       were measured. ex. 

i 
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7,        EnperimenUl Retulf and Cbiervatior« 

The results of the experiments described above are presented 

in Table 5.2 and Fig.  5. 14.    Correlation with the predictions of the 

rigid-plastic theory takes place through the ratio   t>ex/t>th   0' the central 

deflections in Table 5.2 and by means of the   \   versus   IR/(12mMo6) 

plot of Fig.   5. 14 which is a form of p-I diagram. 

The main observation is that the central deflection ratios   6ex/6th • 

by ranging from 0. 14 to 0, 38,  #how that the theory overestimates the 

central deflections from the present experiments by factors ranging 

from about 3 to 7.    That the plates are much stronger than predicted 

is due to the following reasons: 

(1) In the rigid-plastic theory the effects of elastic strain 
energ/ and vibrations,  strain-hardening,  and strain rate 
are neglected ail of which add strength to a structure.   How- 
ever, the material used has little strain-hardening and is 
fairly insensitive to strain rate. 

(2) If the deflections become large enough membrane forces 
become significant and the theory considers a bending action 
only.   In general.  It can be seen in Table 5.2 that as the 
ratio   6    /R   Increases the ratio   ^^/^   decreases. 

(3) Frictional and circumferential membrane forces near the 
plate rim, or rather near the circle passing through the 
ends of the radial slots,  add strength to the plate. 

(4) The experimental pulse was exponential whereas the 
theoretical puls ■ was rectangular and for a given peak 
pressure and impulse the latter predicts larger deformations. 

(5) The applied impulse is probably less than that recorded 
against a rigid target.    In Fig.  5. 14 all the experimental 
points would be moved to the left (in the direction of 
decreasing impulse) and hence into closer agreement with 
the theoretical curve. 
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Table   5.2 

EXPERIMENTAL RESULTS 

Radius 
R 

(im-he ■) 

Thickness 
d 

(inch) 

Yield 
Stress 

0 

(lb/in2) 

Static 
Collapse 

Pressure 
P.2 

(lb/in  ) 

.Pm 

P. 

Central 
Deflection 

| 
ex 

(inches) 

IR 

|    Um   •   1 y               o ex 

6e« ' ex 

th ft 

6 5/8 43,350 254 5.67 .312 
.344 
.344 

2.72 
2.61 
2.61 

052 
.057 
.057 

. 18 

.21 

.21 
5/16 42.700 174 8. 31 .781 

.688 
2.29 
2.44 

. 13 

. 12 
.25 
.22 

1/4 41.800 109 13.22 1.219 
1.250 
1. 156 

2.59 
2.56 
2.66 

.20 

.21 

. 19 

.19 

. 1«» 

.18 
3/16 39. 300 58 25.05 1.875 

1.875 
2.56 
2.5b 

.31 
. 31 

.19 . n 
4 3/8 44, 550 688 2. 10 . 1875 

.219 
2.32 
2.15 

.047 

.055 
.31 
. 36 

5/16 42.700 391 3.68 .375 
.375 

2. '1 
2.17 

.094 

.094 .30 

1/4 42.200 248 5.81 .688 
.668 

2.30 
2.30 

. 17 

. 17 
.26 
.26 

3/16 39, 300 129 11. 10 1.0312 2.93 .26 .14 

Peak pressure p 

Impulse I 

Mass density p 

Mas> m 

Plastic moment M 

■ 1440 lb/in 

« 0.335 lb-sec/in2 

■ 0.000253 lb-sec2/in4 

* cd  lb-sec   /in 

=    o   d2/4 lb-in/in o 

Material:   6161-T6S1 aluminum 
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FIG. 5.14   THEORETICAL AND  EXPERIMENTAL  RESULTS 

The duration of the fixed target pulse is about 800 psec (Fig.  Z. 3) 

and much longer than the fundamental response times of quarter 

periods   T/4   of the fundamental modes of vibration of the plates (see 

Table 5. 3 below).    It is known from the photodiode experiments 

(Section II) that both the shape and impulse of the rigid-target pulse 

is affected by the target mobility.    An additional complication is that 

the target mobility varies over the plate.    This interaction is important 

and requires further study. 
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Table   5. 3 

RESPONSE TIMES OF FUNDAMENTAL MODES 

Radius 
a 

(inches) 

Thickness 
d 

(inch) 

Response Time 
T/4 

(^sec) 

6 3/8 223 

5/16 268 

1/4 335 

3/16 446 

4 2/8 99 

5/16 119 

1/4 149 

3/16 W 
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NOMENCLATURE 

d 

I 

h 
m 

M > N 

Mo 
p 

Pi 

Pm 

P. 
r 

R 

t 

'o 

h 
T 

V 

V 

62.   6 

ex 

'th 

plate thickness 

impulse 

ideal impulse 

mass per unit area 

components of bending moment 

fully plastic moment 

pressure 

mechanism pressure bound 

peak pressure 

static collapse pressure 

radial coordinate 

plastic radii of regime boundaries 

plate radius 

time 

pulse duration 

time at end of phase lb 

time at end of phase 2 

fundamental period of plate vibration 

velocity of plate center 

v(to) 
plate deflection 

plate central deflection at time   t 

plate central deflection at time   tj 

plate central deflection at time   t^ 

experimental final central deflection 

theoretical final central deflection 

v/vo 

1 - P./P, 

P/Pg 

Pl/P. =Pm/ps 
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NOMENCLATURE (Continued) 

v 

5 

6M m/l2R2 

o 
^(l/pj) 

tn(Ußu) 

? at tim«   t. 

Z at time   t. 

rl /R 

r8/R 

l2M0(t-to)/IR2 

12M   (t.-t  )/IR' o    1    o 
12M   (t,-t  )/IR' 

12M t/mR2 

12M t  /mRz 

o o . 
(-tnR/r1 + 1)' 
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SECTION   VI 

CLAMMED CIRCULAR RIGID-FLASTIC PLATES 
UNDLR BLAST LOADING (Partial Loading) 

A theoretical study is made of clamped circular plates of rigid- 

plastic material subjected to blast loading uniformly distributed over 

a central circular area.    The dependence of the permanent central 

deflection on pressure,  impulse and loaded area is obtained when the 

blast pulse is taken as a rectangular pulse.    Experiments are described 

and the permanent central deflections obtained are correlated with the 
theoretical predictions. 

1. Introduction 

The problem treated is the response of a clamped circular plate 

subjected to a suddenly a -plied pressure uniformly distributed over a 

central circular area.    The pressure is assumed high enough or held on 

the plate long enough to produce moderately large plastic deformations. 

Although the governing equations are derived for a general pressure- 

time relationship,they are solved only for the simplest case; that of a 

pressure held constant for a time and then suddenly released (a rec- 

tangular pulse).    It is the variation of the permanent certral deflection 

with pressure,  impulse (area under the pressure-time curve) and the 

loaded area that constitutes the principal result.    Because of interest 

in moderately large plastic deformations and in order to simplify the 

analysis the plate material is assumed to be rigid-perfectly plastic 

obeying the Tresca yield condition and the associated flow rule.    Only 

the bending action of the plate is taken into account. 

Past work on the dynamic response of a rigid-plastic circular 

pl.xte concerns blast or impulsive loading uniformly distributed over 

the entire area.    In Section V a clamped plate subjected to a rectangular 

pulse is treated.    Wang ani Hopxins I 5. l] found the response of a 

clamped plate to an ideal impulse.    A similar method of solution,  the 

established continuity and jump conditions,  and similar nomenclature 
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are employed here as is done in Section V. The responses of a simply 

supported plate to an ideal impulse and a rectangular pulse were found 

by Wang [5.2] and by Hopkins and Prager [5.3] respectively. 

The present problem is quite similar to that of Section V but, 

due to the loading covering only a central pan of the plate (Fig.  6. 1), 

two additional mechanisms of deformation can exist.    An analogous 

situation exists for beams and the two additional mechanisms are 2b 

and 3 of Section ITT. 

2.        Mechanisms of Deformation 

A blast pulse may be idealized to the form shown in Fig.   6.2 

with an instantaneous rise to the peak pressure   p      followed by a 

continuous monotonic dec^y.    It is assumed that this form of pulse 

allows a steady progress through the various mechanisms of deformation 

that v 41 be described. 

»HI 
*    umnu 

wf r 
|*(B O 

4 
I 

FIG. 6.1   CIRCULAR PLATE  PROBLEM 

'4 
p. 

•*-4M«-9l 

FIG. 6.2   IDEALIZED BLAST   PLATE 

During deformation the plate is divided into annular regions in 

each of which exists a certain plastic regime defined by a vertex or 

side of the Tresca yield hexagon (Fig.  6.3) relating   M   and   N ,  the 

radial and circumferential components of bending moment (positive 

moments cause tension on the underside of the plate),    in this problem 

only the portion ABC is involved.    Associated with these annular regions 

are velocity fields which must satisfy the flow rule, boundary conditions, 

and the appropriate continuity and discontinuity conditions [5. l]. 
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FIG. 6.3   TRESCA YIELD   HEXAGON 

may be expressed in the form [ 5. 4] 

.2   2, 

From the equation of equilib- 

rium,  the static collapse pressure 

p   i  acting on a central circular s 
area of radius    r =a   of a plate of 

radius    r = R ,   is found by assuming 

that in the circle   0 «  r  ^ r    ,  the 

plastic regime is AB,    A   being at 

the plate center and   B   at radius 

r = r    , while in the outer annular 

region   r     s r  « R   the plastic 

regime is  BC ,    C   being at the 

plate support   r = R .    The result 

P8R   a (1 -2a/3Ds)/2Mo =1        0  < a   <  p (6. 1) 

where   p     is the solution of 

2a(l+tnl/ps)/3p8 =   1 (6.2) 

and 

P8R2p*/6Mo =   1 P8  s a « 1 (6.3) 

where now   p     is the solution of 
8 

pf(5 + 2inl/p ) = 3a2(l+2tnl/a) 
B 8 

(6.4) 

InEqs.  (6.1).   (6.2),   (6. 3) and (6.4),    p   * r  /R ,    a=a/R   and   M 
s        s o 

is the fully plastic moment. 

For values of the peak pressure in excess of the static collapse 

pressure the plate deforms initially in one of four mechanisms depending 

on the parameters   \ = p    /p     and   a = a/R . m    s 



(a)       Mechanism 3 

For large value« of   \  it is assumed that the initial mech- 

anism of deformation consists of a central portion of radius   ro(t) 

moving at a velocity   V{t) , an outer annular portion   r2(t)  « r   « R   at 

rest, and an annular region between undergoing plastic deformation 

(Fig.  6.4).    At   r = ro(t)   and   r = r2(t) (ro < r2)   two plastic hinge 

circles exist and,  for blast puh es 

of the kind shown in Fig.   6.2,   the 

inner radius is assumed to decrease 

until the center is reached while the 

outer increases until the support is 

Of     o     • 
,tn 

A x 
I 
i    A   lABJBClcl 
I I      I      I   I 

reached.    At the radius    r = r^t) 

FIG. 6.4   MECHANISM 3 

the plastic regime B exists and the 

rate of the radial component of 

curvature changes sign across this 

circle.    The plastic regimes existing 

elsewhere are shown in Fig.   6.4. 

The velocity field meeting the above description,  satisfying the flow 

rule, boundary condition« and the appropriate continuity and disconti- 

nuity conditions [5. l] i« 

w. = < 

Vll-cMr-r^/rj] 

Votnr2/r 

0  s r  s   fo(t) 

r   (t)  s r  « r  (t) 
o i 

rjit)  « r   s  r2(t) 

r2(t)  « r  s R 

(6.5) 

where    I/o = tnrz/rl f 1 - r^rj . 

Jn (6.5),    w   is the plate deflection and the «ubscript   t 

denotes partial differentiation. 

Deformation proceeds under another mechanism once one 

of the hinge circle« reache« it« terminal po«ition.    If the outer hinge 
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circle reaches the support first the ensuing mechanism,  called mech- 

anism 2a,  is described by the velocity field (6. 5) with   r2 = R .    If the 

inner hinge circle reaches the center first the ensuing mechanism, 

called mechanism 2b,  is described by (6. 5) with   ro = 0 .    The final 

phase of deformation occurs after both traveling hinge circles have 

reached their terminal positions and the mechanism,  called mechanism 

1,  is described by (6. 5) with both   r    =0   and   r2 = R .    This last mode 

is the same as that for static collapse. 

I 
(b) Mechanism 2a 

This mechanism given by the velocity field (6. 5) wicn 

ty = R   is an initial mechanism for certain ranges of   a and   X .    In 

fact,  the range of   a   turns out to be 0. 56 * a s   1 .    The range of   X 

depends on   a and is denoted by   Xj < X  < X2   the numerical value» 

for which are shown in Fig.  6. 5. 

(c) Mechanism 2b 

This mechanism given by (6. 5) with   ro = 0   »« likewise an 

initial mechanism for certain ranges of   a   and   X .    The range of   a 

is   0 < a    i  0. 56   while the range of   X depends on   a   and is again 

denoted by   ^i   <  ^  ' ^o   the numerical values for which are shown 

in Fig.  6.5 
« 

(d)       Mechanism 1 

This mechanism.given by (6. 5) with   r 0   and   r2 = R, 

is an initial mechanism, and hence for blast pulses the only mechanism, 

for all   a   and for a certain range of   X   depending on   a .    The range 

of   X  denoted by   1  <   X   s   X.   is obtainable from Fig.  6.5. 

The way in which   X.   and   X,   »*"« found is described 

once the governing equations are derived. 
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FIG. 6.5   DEFORMATION MbCHANISM DIAGRAM 

3,        Governing Equation» 

Independent of mechanisms the equation of motion is 
r 

N - (rM) r   ' j    (P-^,t )rdr (6.6) 

where th-- subscripts   r   and   t   denote partial differentiation and   m 

is the mass per unit area of plate.    Differentiating   the velocity 

(6. 5) provides the acceleration to be substituted in (6. 6) and the yield 

condition (Figs.   6. 3 and 6.4) allows the circumferential component of 
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bending moment   N   to be eliminated.    Performing the integration in 
(6.6) and uging the propertiet   M=0in0srsr    ,    hilr  ) = 0 

o 2 * 
M(r2) = -Mo   and   Mr(r2) = 0   leade to the following four equations 
governing mechanism 3. 

V   =   pR  /12M 

2. 

o (6-7) 

V/r1(?1-§2+r1)Ir1(6-8t1+3r1
2) + 2(^-?2)(3.3T1+r1

2)]. V§'1TflT,(l-TiH4-3r) 

M?r52)(6-8r1+3r1 )) - V§2'r1
3(4.3n ) - VnVl ^(4 - 3r1)+ 2(5,-?2)(3.2T1)1 

f[(pR2/6Mo)^3a2.2a3e5l.(lVe"2?1)-l]e25l(?r52 + r1)
i 

lr        2 "2?1 ? 2?i 
[[(PR   /6Mo)e       Ir1(3-3Ti+T1

2)-l]e     1(?1-?2+r1)
2 

a < p. 

D, < a 

(6.8) 

V'(5r?? + r1)l3e       1"   2 -3-2(?1-§2)(3.3r1 + 3r1
2.T1

3)] - V^iie^1'^ 

-3-2(5 6TI+6TI2-2TI3)] l-?2) (s-^d-^(3-2^1-2(5r52)2(3- 

-V52(3e <?1-?2-(l-ri)U(51-52)(3-6r,+6T1
2-2Ti3) + 3(l. 

-Vt,1S« -3.2(51.52)(3-3r1S2T1
3).6(5r52)2(l.n)2] 

f{^(pR2a2/2Mo)-lj(51-52)-l]e2?1(51-?24T1)
2 

|j(pRV/4Mo)^1.252+2tn(l/a).e"2?2/a2j-(l+5r52)Je2?1(51-?2+T1)
2 

a < p, 

P, < a 

(6.9) 



2(5,-?-,) , 2(?i-?2> 
V'(?1-?2 + T1)[3C       '     ^ -3+2^(3-31!+Tl)]-V?1

/l3e 

.3-2{51-?2)(3-6T1 + 6T1
2-2TI3) + 2TI2(1 - n )(3 - 2^ )]     V?^ 3e 

2(?1-?2) 

2    a   3T ,r,2(?l-?2> 
-2n ] 

2(5,-?, 

|2(51.52)-l + 2n   1+3-611 + 4^-2^]   -  Vn'U 

(1-^ + 2^(3-2^)]  - V^Ue 

2? 
= l(pR2a2/2Mo) - l]e     1(?1-?2 + T1) 

3-6(?1-?2) 

0 < p2 <   1 

(6. 10) 

The new variables that .-«ave been introduced in the derivation of 

(6. »),   (6. 9) and (6. 10> are defined by 

%l   =   tnU/Pj) ?2   =   in(l/o2) 

p      =   r   /R Ko o P,    =   rj/R 

n = i -PO/P, 

p2   =   r2/R 

Primes over the dependent variables   V ,   Cj ,   ?2 ,  and   TI denote 

differentiation with respect to the variable    T    where 

T'   ^    12M  t/mR o 
(6.11) 

The equations governing mechaniims 2a,  2b and 1 are readily 

obtained from (6. 7),   (6. 8),   (6 9) and (6. 10) as outlined below. 

(a)       Mechanism 2a 

The cuter hinge circle is stationary at radius    r = r2 = R 

and the propeities leading to the governing equations are   M = 0   in 

the region   0 i r   * ro ,  Mir y) = 0 ,  ^nd   M(R) = - Mo .    Consequently, 

the equations are (6. 7),   (6. 8) and (6. 9) with   ?£ S! ^2 = 0 * 
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(b)       Mechanism 2b 

There is no inner hinge circle and the relevant properties 

are   M^) = 0 .   M(r2) = - Mo . and   Mr(r2) = 0 .    Thui. the governing 

equations are (6. 8),   (6. 9) and (6. 10) with   ^=1   and   TI'=0. 

(c)      Mecha  ism 1 

The outer hinge circle is stationary at radius   r = r2 = R 

and there is no inner hinge circle,  leaving the two properties   M^j) = 0 

and   M(R) = - M    ,   so the governing equations are (6. 8) and (6. 9) with 

»2 = ?2= 0 •  *]= l ' and   V = 0 • 

Having now the equations governing motion in all four 

mechanisms.it is possible to find the functions   Xj   and  \2   shown in 

Fig.  6. 5.    It is assumed that the hinge circles and the circle   r = rj 

have zero initial velocities so that   ?J=52=T1's0  at   T   =0-    S   *■ 
the upper bound of the values of   \   for which mechanism 1 applies and 

the initial value of   ^ .  designated   %[* .  for each  K ■ pm/p8   or 

oeak pressure   p      of this mechanism is obtained by solving the 
m . !      1 * 

following two equation which are the appropriate special cases of 

(6. 8) and (6.9): 

[te^/bMXfO-Zae    Mle       (1+?^      a < Pj 
V'il+Z^)   = m ^•1Z, 

, -2?, 2?, 
[(p    R^/bMje        -l]e     '(l*«,) 
m o * 

pj < a 

2?l V'(3e    1- 

2?, 
[(PmR2a2/2Mo)?r(l+?1)]e    ^l^^)    a<P1 

4§l)=< 
.2 2 

-2? 1/  2 [(p   R':a/4Mrt)< 1+2^1(1/a)-e        /a ,rm o   I 

2?1 

V 

pj < a 

(6.13) 
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By considering an increasing sequence of   X's the upper 

bound   V.    is that value which causes an inflection point in the bending 

moment diagram for   M   either at the plate center or at the support. 

This   means that the yield condition will be violated at these places 

for values of   \   infinitesimally larger than   \. .    The conditions 

Mrr(0, 0) = 0   and   Mrr(R, 0) = 0   are expressed by the equations 

V'   =   p    RVlZM m o (6. 14) 
2?l ?  7 2?i 

V    (3e       -1) = [pmRV/2Mo)-l]e    ^l^j) (6.15) 

and when K = X^   either (6. 14) or (6. 15) is satisfied by the solutions 

V'{0)   and   ^      of (o. 12) and (6. 13).    Computations show that when- 

ever   0   £ a <0. 56,    \.    is determined by the condition   M     (0,0) = 0 

repress   -d by (6. 14),  and whenever 0. 56  s  a  *  1 ,    \.    is determined 

by the condition   Mrr(R, 0) = 0   represented by (6. 15).    For further 

increases in   Xj   the former case indicates that the initial mechanism 

is 2b whereas for the latter it is 2a.    The two portions of the   \.   curve 

are shown in Fig.  6. 5. 

The values of   \-   are found in a similar way.    If the initial 

are mechanism is 2a,  the initial values   V' {0) ,    ?,     ,  and   ry' 

obtained by solving lor each   \(\ >X.)   or   p      Equations (6.7),   (6.8) 

and (6. 9) wit'.i the special values   ?,' = ?2 :s V = ^ '  and   ?? = 0 '    S   i8 

that value of   X   which causes an inflection point in the bending moment 

diagram for   M   at the support.    The condition   M     (R, 0) = 0   is 

expressed by the equation ,  ■• 

25, 2 ? , 2?. 
V'[3e       -3 + 2n(3-3n+Ol =[(PmR a /2Mo)-l]e       (l + Sj)    (6.16) 

(0) .(0) 
(0) 

and when   \ = X, .  the initial values   V '(0) ,   {: '   and   n        satisfy 

(6. 16).    If the initial mechanism is 2b,  the initial values    V'(0) , t,\ 
(0) 1 

and   fl       are obtained by solving for each   \ (\ > ^J   or   p       Equations 

(6.3),   (6. 9) and (6. 10) with the special values   fj = ?£ = ^' = 0 •    and 
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n « 1,        \7   is that value of   X   which causes an inflection point in the 

bending moment diagram for   M   at the plate center.    The condition 

0   is expressed by the equation Mrr(0, 0) 

p    R   /12Mrt m o 
(6.17) 

and when   ^ = ^ '  the initial value   V'W   satisfies (6. 17).    The two 
portions of the   X-   curve are shown in Fig.  6.5. 

4.        Solution for Rectangular Pulse 

In this section is an outline of the method of solution applicable 

to rectangular pulses with pressures high enough to cause initial defor- 

mation by mechanism 3.    For the other initial mechanisms the method 

is similar and the details simpler. 

A solution is obtained if it is assumed that while the constant 

pressure is being applied the hinge circles and the circle of radius 

r = r     remain stationary.    This phase of the motion,  called phase la, 

involves the solution of Equations (6. 7),   (6. 8),   (6. 9) and (6. 10) with the 

pressure   p   a constant   (X > X  )   and with the special values   ?| = ?2 = 

n'= 0 .    The solutions are denoted by    ?j     .   ?2     '  and   ^       •    v'  *• 
give,   explicitly by (6. 7).    Corresponding to these values some initial 

values of the radii   PO ,   pj , and   p2   are listed in Table 6. 1 for two 

values of   a .    Note that as   X   increases they tend to the radius   a   of 

the loading. 

Let the pulse end at time   t = to ,   or when   T' ■ T^ , and let the 

velocity and deflection of the plate center at this time be   Vo   and   b 0 . 

Then from Equation (6.7) alone,   successive integrations give 

and 

1/m 

I2/2mp 

(6.18) 

(6.19) 

where   I = pt     is the impulse applied per unit area. 
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When   t > t    ,  no pressure acts on the plate and,  according to 

(6.7), the velocity of the plate center or rather the central region 

0  s r  * r      IB constant during .his phase of motion,  called phase lb. 

It is evident from (6. 8\.   (6. 9) and (6. 10) with   V' = p = 0   that   %l ,  52 , 

and   ri    can no longer be treated as constants. 

In Equations (6. 8),   (6. 9) and (6. 10) set   V ' = 0 ,    V = V     and, 
o 

for convenience,  introduce the nondimensional time variable    T  defined 
by 

t   =   mR2T'/12M     =   mlTv  T/12M o o o (6.20) 

The resulting equations,   in indicial notation,  may be written in the 

form 

-i.'A.. = B. i.j =   1,2,3 (6.21) 

in which the derivatives are with respect to   T, and,  for notational 

purposes only,    ? ^ = T) . 

The chosen numerical scheme for the solution of (6.21) commences 

by solving for the derivatives   §.' (Equations (6. ^l) are linear in the 

derivatives) to give 

?/   =   ^(Cj .   ?2 '   ^ i = J.2«3 (6.22) 

From (6.21) the variable   T   can be eliminated resulting in the two 

equations 

d^/d^ = g(?1, ?2,   53)   and   d?2/d?3 = hf^, ?2, ^J       (6.23) 

The initial values determined in phase la are   :       .    From its initial 

value an incremental change is made in one of the variables here 

chosen to be   ?,   so that its new value is   {«    a {«    ^ Af • •    Then, 

109 



from (6.23), the corresponding new values of   '     and   *,   are 

it1' ■ i[0) * g'01«, 

4". 40,
th'o'153 

«h«.   ,(0' . t^ .  4°' ,  d0>) .nd   h<0> . h<' .  5'1" .  d\    With 
(1) (1) (1) the values    ??      the new values   gx       and   h'       can be determined and 

hence   5;       can be calculated with the next increment   A?, = 5', ' - §*   '. 

This procedure is continued until either   ?, = r; = 1   or   £_  = 0 .    In the 

former case the deformation continues by mechanism 2b whereas in 

the latter case it continues by mechanism 2a.    To find the value of   T. 

of   T  at the end of phase  lb all the time increments are summed.    The 

first of such increments is 

3 

in which   §3(0> = f^0)   by (6.22). 

Finally the deflection   6     of the plate center at the end of phase lb 

is given by 

61 * 6o=  Vo<tl-to) = l2R2<Tl-To)/12mMo <6-24) 

2 
in which   6     is determined by formula (6. 19) and   T    = 12M  /R p . o 00 

As mentioned abovA the next phas? of motion,  called phase 1c, 

can take one of two forms depending on which hinge circle reaches it.-i 

terminal position first.    Only the case of the inner hinge circle of 

radius   r   (t)   reaching the center first will be described since the other 

case is covered by the description of phase lb in the problem of 

Section V the only difference being in the initial values   §.   and   r\ . 

(In Section V   5   pl*y» the role of   5.  •)   Numerical calculations show 

that   r   (t) = 0   before    r2(t) = R   whenever   0   i a 4 0. 56.    The equations 

governing phase 1c for deformation by mechanism 2b are (6.8),   (6.9) 
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and (6. 10) with the special values   p = 0 ,   V = 0   and   r| = 1 .    For 

brevity,  the indicial notation is used to express these equations in the 

form 

?./Cij   =   0. i.j = 1.2,3 (6.25) 

In (6.25),  deriva ives are with respect to the time variable   T defined 

by (6.20) and, for notational purposes,   ?3 = Y a V/Vo . 

The numerical procedure is the same as that in phase lb except 

that increments   A5-    are used (instead of A?,) and the initial values are 

the final values of phase lb.    The procedure is halted at   ?2 = 0 ^p2 3 ^ 

when phase 1c ends.    Let the central deflection and the time at the end 

of phase 1c be   (>2   and   t2 (T = T2).    The n 
N 

T2 '. •&" 
n=l 

where 

Also 

6,-6 

,T(n)::(>).5(n.l)       .(n.l) 

i -j™ - JM-O[^ 
1 1 

which, by the numerical procedure adopted above,   is replaced by the 

summation N 

...«, i2«2 

=    12mM. 
y Y(nwn) 

(6.26) 

In the final phase of motion,  called phase 2,  deformation is by 

mechanism 1 with the governing Equations (6.8) and (6.9) having the 

special values   5^ = rl'= ?2 = p = 0 '   and   ri=1.   So that the analysis 
of this phase conforms to those of Section V and Reference [ 5. l],  the 

variable   T    is retained and the variable   Q = V/V2   is introduced where 
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V, 3 V(T?).    Then,  the initial and final values of   £ are unity and zero. 

Alto,  the governing equations become 

2   2?1 

2? 2?, 2 § 

(6.27) 

(6.28) 

in which differentiation is with respect to   T   and   Y2 ■ V2/V    (this is 

the value of   v  at the end of phase 1c).    Eliminating   T   from (6.27) and 

(6.28) leads to a linear differential equation with the solution 
5, 

?1(T2'+ ' J     4 + 75 + 2r-3e<:^ 
(6.29) 

W 
Motion ceases when   C = 0   and thi8 occurs when   5j * O- 478   which is 

the solution of the equation 

4 + 7? + 2?2 - 3e2?=  0 

Let   T = T.»   when motion ceases.    Then 

MV ^3) 

T3 -T2 
f    I!   -   v        f (3eZ?-4g2-6g-3)Cd? 
j       ?'   '   Y2    J      e^(?+l)(4 + 7? + 2^.3e^ (6.30) 

MV ?1<72) 

Finally,   let the central deflection when   T ■ T« (t ■ tj)  be   63 .    Then 

W 
ft     ft    - Jil VdT -    .1ZR.2     Y2       r (3e2?-4?2-6g-3)^d? 

1ZmMo    2     J       e25(5+l)(4+7?+2?<:.3e^ 

5,^) 
) 
(6.31) 

In Figs.   6. 6 and 6. 7 are shown the paths ABCD followed by the 

point (?, ,   ?, ,   r,) for values of   a equal to 0.438 and 0.656 respectively, 
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FIG. 6.6   TRAJECTORY  OF  i^.^.ri) FOR I   - 0.438 AND A - 15 

FIG. 6.7   TRAJECTORY OF (f,,fj#i,) FOR a   - 0.656 AND A -  15 
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both for   X » 15   which «Urts motion by mechanism 3 («ee Fig.  6.5 or 

Table 6. 1).    In the case of the smaller value of   a Fig.   6.6 shows the 

trajectory starting at   A   and intersecting the plane   r|« 1   at   B   which 

corresponds to the value   p    = 0 .    At this point of intersection the inner 

hinge circle has reached the center and the trajectory continues along 

BC   in the plane   TI« 1   which corresponds to mechanism 2b.    It next 

intersects the plane   ?, = 0   at   C   which corresponds to the value   p2 = 0. 

At this point of intersection the outer hinge circle has reached the support 

and the trajectory continues along   CD , the line of intersection of the 

planes ?7 = 0   ^nd   t] = 1 ,  corresponding to motion by mechanism 1. 

Figure  6. 7 for   a = 0. 656   can be interpreted in a similar manner. 

Figures 6.8 and 6.9 show the trajectories ABCD in   Po ,   0j .   P2   space. 

Figures 6. 10 and 6. 11 show the variation of   p    ,   Pj , and   P2 

with   T in all phases for values of   a   equal to 0.438 and 0. 656 respec- 

tively, both for   X = 15 .    In each case the starting values of   Pj   are 

close to the loading radius   a    with   Po   and   pj   almost equally spaced 

on either side (see Table 6. 1).    The three radii are consUnt during 

phase  la.    The magnitudes of the average velocities in phase lb are 

comparable.    During phase lb and,   in Fig.  6. 11,  during phase 1c the 

values of   p' are almost constant.    During phase 2,    p     is almost o " 
constant in Fig.  6. 11 for   a = 0. 656   unlike that in Fig.   6. 10 but like 

that in Fig.   6. 12 which has been included to allow a comparison with 

the case   a = 1 (X = 15.7).    The final value of   T   ,  i.e., T3 ,  increases 

with   a   which is to be expected because the work input increases with 

5.        Results and Conclusions 

For three values of   a   Fig.   6. 13 chows the relationship among 

the final central deflection   6 ,  the impulse per unit area   I ,  and the 
2   2 

pressure   p       in the nondimensional form of   \   versus   mM   6/1  R    =v. 



FIG. 6.8   TRAJECTORY OF  (p^.p,) FOR a - 0.438 AND A - 15 

t* —— n 

FIG. 6.9   TRAJECTORY OF (po.P1.P2> F0R a " 0-656 AND A "  ,5 
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PHASE   lo 

PHASE  lb 

FIG. 6.10   VARIATION OF ?<,,?,, AND p2 WITH r FOR  a - 0.438 AND A -  15 

PHASE lo 
PHASE lb 

1 r 
PHASE 2 

N2<') 

"^ #,W 

02 0 5 0.4 05 06 07 08 09 I0 
0«    4*4 6   W r'l2Moi/mR2V0 

FIG. 6.ll    VARIATION  OF  p0,pv AND p2 WITH  T FOR  «- 0.656 AND A  -   15 
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FIG. 6.12   VARIATION OF pQlpv  AND p2 WITH r FOR a - 1  AND A -  15.7 

The curve for   a= 1. 0   was obtained from the results of Section V.    The 

three curves are alike.    They »tart from the value   X = I   where   6=0 

and without curvature change tend monotonically toward vertical a>ymp- 

toteg.    The location of these asymptotes have not been found for   a = 0. 438 

and   a  = 0. 656   but would be determined by considering the case of an 

ideal impulse (X = 00 ).    However, judging by the case   a » 1.0   for which 

the asymptote is known.the value of   v when   K» 100   is sufficiently close. 

These values are 0. 0212 and 0. 0456 for   a  equal to 0. 438 and 0. 656 

respectively.    Figure 6. 14 is another way of representing the same infor- 

mation and is essentially a pressure-impulse diagram. 

Figure 6. 15 is a nondimensional plot relating the pressure to the 

loaded area considering as a parameter   v   which is proportional to the 

ratio   6/I2 .   By treating both impulse and permanent central deflection 

as fixed quantities the curves show how the pressure must be increased 

as the loaded area decreases in order to maintain   6 . 
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FIG. 6.13   RELATIONSHIP  AMONG 8, A AND  I 

From Fig».   6. 13,   6. 14 and 6. 15 the following conclusions can 

be drawn: 

(1) For a given impulse,  the central deflection   6 increases 
monotonically with the pressure   p^   becoming a maximum 
when the pressure is infinite,  that is, when the given 
impulse is applied as an ideal impulse 

(2) Again for a given impulse,  consideration of how   6   increases 
with   X  in Fig.  6. 13 reveals that for   a > 0.438   the central 
deflections are greater than 35 percent of that due to an ideal 
impulse for pressures about sever times the corresponding 
static collapse pressure,  that is,   whenever   X >  7 ,    Below 
this value of   \   the decrease of   K with   6 is quite pronounced. 
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(3) For a given rentral deflection   6   ,   Fig.   6. 14 ghow» that 
(or   X  >  7 (a >  0.438) the increase in impulne,   over the 
ideal impulie,   necessary to maintain the given deflection 
is less than 7 percent.    A large increase «n   impulse is 
required to maintain   6 as   X  decreases further,  especially 
In the range    I  < X  <  3 . 

(4) For a given permanent central deflection   6 and a given 
impulse   I   Fig.   6. 15 shows that the pressure required to 
maintain   6  Increases rapidly as the loaded area decreases, 
especially for   a < 0. 6 (for the values of   v shown). 

10 2.0 SO 40 so 
(*  4M» •« 

FIG. 6U    PRESSURE-IMPULSE  DI>r«»AM 

6, Description of Experiments 

Circular plates of 6C61-T651 aluminum with thicknesses of 1/8, 

3/16 and 1/4 inch,  clamped at either 8-lnches or 12-Inches diameter. 



— -.. .,.._ 

y 
"« 

•0 

ro 

60 

50 

40 

SO 

20 

10 

0 

."0019 

-    ^«00)0 

-L -L -L 
02 04      0« 06       10 

FIG. 6.15   VARIATION OF   PRESSURE 
WITH  LOADED AREA 

were subjected to pulses gern'rated 

in an oxyacetyle/ie shock tube having 

a spring-mass system against each 

plate.    The experimental arrange- 

ment is shown in Fig.   6. 16.    Thick 

steel annular supports provided 

clamping against rotation only,   a 

ring spacer keeping their distances 

apart slightly greater than the plate 

thickness.    Apart from circumferen- 

tial membrane forces and unavoid- 

able frictional effects the plate 

material was allowed to displace 

freely inwards during deformation. 

To ensure good clamping the overall 

diameters of the plates tested v ere 

9 1/2 and 15 inches but to minimize 

the build-up of membrane forces 

they were slotted radially at about 1/2-inch intervals around the rim. 

The lengths of the slots were such that their ends did not pass over the 

support circle during deformation.    Figure 6. 17 shows two plates of 

different diameter after deformation. 

Two types of pulse were used and their shapes were taken to be 

those recorded under a similar configuration by a rod gage.    They aie 

therefore the pressures acting on a fixed target and they imply the assump- 

tion that the modification of the pulse due to plate motion is small.    The 
2 

first pulse is that of Fig.  2.8(d) with a peak pressure   p      = 865 lb/in 
iTl -y 

and an impulse (area under pressure-time curve) 1 = 0. 363 Ib-sec/in    , 

The diagram and table shown opposite the pressure record gives the 

configuration.    The second pulse used in the experiments is that of 

Fig.  2, 9(e) with a peak pressure   p      = 485 lb/in    and an impulse 

I ■ 0.209 lb-sec/in2. 
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FIG. 6.16    EXPERIMENTAL   ARRANGEMENT 

Tensile tests performed with the Instron machine on standard 

ASTM specimens taken with and across the direction of rolling of the 

plate material provided stress-strain diagrams from which the yield 

stress was determined.    The yield stress is here defined as the stress 
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FIG. 6.17   TWO  PLATES AFTER  DEFORMATION 

at the point of intersection of the straight line approximations to the 

elastic and strain-hardening portions of the stress-strain diagram. 

An average was taken of the yield stresses obtained from specimens 

with and across the rolling direction. 

After the blast-loading tests,  the permanent central deflections 

6        were measured. ex 

7. Experimental Results and Observations 

The results of the experiments described above are presented 

in Table 6. 2 and Fig.  6. 18.    Correlation with the predictions of the 

rigid-plastic theory takes place through the ratio   6     /6        of the 

central deflections in Table 6.2 and by means of the   \  versus 

IR/(12mMo6) 
1/2 plot of Fig.   6. 18 which is a form of p-I diagram. 

ex 

The main observation is that the central deflection ratios 

/6 .   ,  by ranging from 0.041 to 0.416,  show that the theory over- 

estimates the central deflections from the present experiments by 

factors ranging from about 2 1/2 to 24.    The plates are much stronger 

than predicted for the following reasons: 

(1)       In the rigid-plastic theory the effects of elastic strain- 
energy and vibrations,   strain-hardening,and strain-rate 
are neglected,  all of which add strength to a structure. 
Among these effects it is probably the elastic strain- 
energy and vibrations that are dominant in the present 
experiments.    The plate material,6061-T651 aluminum, 
was chosen because it shows little strain-hardening and 
is insensitive to strain-rate. 
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(Z)       If the deflection« become large enough membrane force» 
become significant and the theory considers a bending 
action only.    However,   in Table 6. 1 it can be seen that the 
final valued--^/R   are not large enough to allow con- 
siderable build-uf» of membrane forces I 1. 15J. 

(3) Frict:onal and circumferential membrane forces at the 
support give the plate added strength. 

(4) The experimental pulse is not rectangular (see Figs.   i.8(d) 
and Z. 9(e)).    For a given impulse a rectangular pulse in- 
flicts the greatest damage among blast pulses.    This has not 
been proved in general but is true in all known solutiont.  for 
example,   in the clamped beam problem of Section 3. 

(5) The applied impulse is probably less than that recorded 
against a rigid target.    Comparison of fixed target impulses 
obtained from rod-gage records and completely free or 
unrestrained target impulse from  photodiode   velocity 
measurements indicate considerable falling off of impulse 
due to the mobility of the target (see Section 2).    It is also 
probable that the pulse shape changes with the mobility of 
the target. 

Among the above reasons for the unsatisfactory correlation,the 

mobility of the target is considered the most important.    This means 

that the impulse imparted is less than that assumed and that the deflection 

tM proportional to the square of the impulse.    For ideal impulses on 

simply-supported plates of 6061-T651 aluminum the correlation in the 

range of   6^/R   used here is    6^/6^ ~ 0. 6 [ 1. 15] whereas the best 

value in Table 6. 2 is 0. 42.    In Table 6. 2 it can be seen that for a given 

plate radius and assumed pulse the correlation worsens as the plate 

becomes thinner.    This observation points to the effect of target mobility. 

The interaction of the elastic vibration modes with the applied 

pressure mechanisms is probably also very important,  especially since 

the pulse times (see Figs.  2. 8(d) and 2. 9(e)) are greater than the response 

time or quarter period T/4 of the fundamental symmetric mode of vibra- 

tion for each plate.    For the plates listed in Table 6. 2 the response times 

are listed in Table 6. 3. 
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Table   6. 3 

RESPONSE TIMES OF THE FUNDAMENTAL MODES 

12 

tt 

Radius 
a 

(inches) 

Thickness 
d 

(inch) 

Response Times 
T/4 
(^sec) 

6 

4 

1/4 
3/16 
1/8 

1/4 
3/16 
1/8 

335 
446 
669 

149 
198 
297 
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NOMENCLATURE 

a 

d 

I 

m 

M,   N 

Mo 
P 

pm 

P. 
r 

r_ 

V   rl'   r2 

R 
t 

n 
h 

T 

V 

y 

6,   63.   6th 

32 

ex 

loading radius 

plate thickness 

impulse 

mass per unit area 

radial and circumferential components 
of moment 

fully plastic moment     0  d  /4 

pressure 

peak pressure 

static collapse pressure 

radial coordinate 

radius of plastic regime boundary (static 
solution) 

radii of plastic regime boundaries 
(dynamic solution) 

plcte radius 

time 

pvlse duration 

time at end of phase lb 

time at end of phase 1c 

time at end of phase 2 (motion ceases) 

fundamental period of plate vibration 

velocity of plate center 

v(to) 
plate deflection 

a/R 

w(o, ty), plate central deflection at time t=t? 

(final aeflection) 

w(o, t  ),  plate central deflection at time t=t o o 
w(o, t.), plate central deflection at time t=t. 

w(o, ty), plate central deflection at time t=t- 

experimental final central deflection 

1 1 L leb 

wm-**— 
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NOMENCLATURE (Continued) 

»1 
\ 

xr 
v 

h 
h 
«3 
P 

po' Pj,   P2 

,(0)       (0) 
'o    '   pl 

0 

ac 
T 

T. 

p2 

V T2, 

1 - P^P, 

Pm/P. 
mechanism bounds on   \ 

mM   6/I2R2 
o 

t^l/pj) 

tn(l/p2) 

r/P 

ro/R. Fj/R r2/R 

initial values of p    ,   p. 

static collapse pressure 

[l,n(r2/r1) + 1 - TJT^' 

yield stress 

12M.t/mR2V. 

12M   t  /mR Vrt , O  O o 
12M   t,/mR2V 

0 2 
12M   t/mR^ 

0 2 
12M   t /mR o o 

12M t./mR Vrt o 1 o 
12M t7/mRÄVrt o <J o 
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SECTION   VII 

MATHEMATICAL MODEL OF SPRING-MASS SYSTEM 

1. Introduction 

In this section is described a simple mathematical model of the 

layered media used in the shock-tube experiments of Section 2.    The 

experimental configurations and corresponding pressure-time records 

are phown in Figs. 2. 5 to 2. 9. Among these, the records of Figs.  2, 9(a), 

(d),  and (3) have been chosen for comparison with the predictions of the 

mathematical model.    In the photodiode   experiments the configuration 

of Fig.  2. 9(e) was used against a free aluminum disk and the (x, t) plot 
of the disk, shown in Fig. .2. 16, is comparedwith the predictions of the model. 

2. Spring-Mass System 

Instead of attempting the solution of the complicated problem of 

finite amplitude wave propagation through the layered media, a very 

simple model is considered.    This consists of a spring-mass system 

as illustrated in Fig.  7. 1.    The mass of foam and Mylar are assumed 
to be concentrated at the ends of 

F(t) 

QW-QM^QAW    AWVQ 

M-MM-M 

FIG. 7.1    SPRING-MASS-SYSTEM 

each massless spring.    The spring 

constants are based on the stress- 

strain relationship of polyurethane 

foam (5 lb/ft  ) shown in Fig.  7.2. 

This stress-strain curve is itself 

approximate since it was obtained 

from a compression test on an un- 

confined specimen. 

As a simplification this 

stress-strain curve is approxi- 

mated by two straight lines or a straight line and a cubic curve as shown 

in Fig.   7. 3.   The foam is assumed to compress to B or E under negligible 
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FIG. 7.3   POLYURETHANE  SPRING 
PROPERTIES 

pressure and under further compression behave like a linear (BC) or 

cubic (EF) spring. 

If the displacements of the masses   m. ,  m,, 

Xyt  . . ■  the equations of motion are 

are   x 1 ' 

m x    - f     , + f n n      n-1       n 

in which 

n 

k  (x   -x   ..) nx n    n+r 
k  (x  -x   , .) n'  n     n+r 

F(t) n = 1 

0 B||0 

linear spring 

cubic spring 

and 

f    =  0 
o — 

(7.1) 

The dots in (7. 1) denote differentiation with respect to time.    If there 

are   N   springs and   N   masses attached to a rigid target (an infinite 

N + 1 th mass) the final equation in the set (7. 1) consisting of   N 

equations requires 

linear spring kNXN 

k   x ^ 
N N 

cubic spring 
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If there are   N   springs and   N 4- 1   masses,  the last being the 

relatively hea      aluminum disk of the photodiode experiments the final 

equation in the set (7, 1) consisting of N + 1  equations requires 

ln+i 

3.        Solution of the Differential Equationr 

In the set of Equations (7. 1) the masses   m     are obtained from n 
the densities and dimensions of the styrofoam,  polyurethane foam and 

Mylar (and aluminum disk when used).    The spring constant   k   or   £ 

depends on the choice made for   B  or E  in Fig.  7. 4 when fitting the 

experimental curve in Fig.   7.2.    It also depends on the length of each 

foam layer. 

The force applied to the mass   m     is taken in the form 

F(t) F   e m 
•at 

(7.2) 

The numerical value of   F_   and   a   are based on the pressure caused m ^ 
by a shock wave from an oxyacetylene gas acting on a rigid wall and 

were obtained by fitting curves to rod-gage records similar to that 

shown in Fig. 2. 3.    The experimental arrangement for these measure- 

ments is that of Fig. 2. 1. 

The initial conditions are   x (o) = x (o) = 0 . n n 

For the solution of Equations (7, 1) the predictor ard corrected 

method of numerical integration has been used.    In particular the 

method devised by Clippinger [ 7. l] and Hamming [ 7. Z] has been used 

with the B5500 computer { 7. 2,   7. 4].    The stability of the methods are 

discussed in References [ 7. 3] and [ 7. 5]. 
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FIG. 7.4   EXPERIMENTAL AND MODEL  PULSES — CONFIGURATIONS OF  FIG. 2.9(e) 

4.        Numerical Regglts and CompariBon» with Experiment 

The first comparison to be made is with the pressure record of 

Fig. 2.9(e).    Corresponding to the layered media of the experiment 

the mathematical model had 10 masses (and an eleventh infinite mass) 

and 10 springs.    Counting from the loaded end,  the first 7 springs were 

considered cubic with   £ - 26. 6x10    lb/in     and the last 3 springs 

were considered linear with   k = 0.014 x 10    lb/in, the latter value 

being taken from a fit of the lower part of the stress-strain curve of 

Fig.   7.2 because the pressures are lower in this region.    An attenuation 

factor (reduction of the peak pressure of the loading) was used to take 

account of the plastic nature of the styrofoam piston. 

Figure 7. 4 shows a comparison of the pressure record of 

Fig.  2. 9(e) with the pressure (on the fixed plane to which the tenth 

spring was attached) obtained from the model.    Bearing in mind the 

simplicity of the model the agreement is quite good,  at least for times 

up to 250 (xsec from the arrival time of the pressure wave.    After this 
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time agreement deteriorates.    Certain parameters,   such as the value of 

k   or   k   and the chosen drop in pressure to simulate the effect of the 

styrofoam.  called above an attenuation factor, were adjusted to aid 

agreement of experiment and theory. 

A similar comparison to the pulses of Figs. 2. 9(a) and (d) can 

be seen in Figs. 7. 5 and 7. 6 and again agreement is quite good up to 

250 jisec from the arrival time of the wave. 

In the   photodiode  experiments the configuration of Fig. 2.9(e) 

was used against an unrestrained disk.    By means of the photodiode 

technique described in Section II  the (x, t) plot of tne disk was obtained 

and is showr in Fig.  2. 16 as the curve labeled   "experiment".    The 

(x, t) plot obtained from the mathematical model is also shown in 

Fig. 2. 16.    Since the transit time of the wave was shorter in the case 

of the model the "experimental" and "mathematical model" curves 

were positioned by giving them a point in common at   x = 0. 0025 inch 

and   t = 50 jisec.    The higher transit time observed in the experiments 

is probably mainly due to the friction between the styrofoam piston 

and the cylinder wall as the styrofoam deforms plastically.    Once again 

it can be seen that the agreement is quite good.    In Fig.  7. 4 is shown 

the pressure acting on the disk and hence the predicted effect of the 

mobility of the target.    The two curves labeled  "model (fixed target)" 

and "model (free target)" clearly exhibit a divergence, that is, the 

pressure difference increases with time during the period between 
t ■ 200 (isec and   t = 400 |xsec. 

It is concluded that the simple mathematical model gives a 

reasonable account of the behavior of the layered media used in the 

experimental technique for pulse shaping.    The various adjustments 

of parametric values used to achieve agreement would largely become 

unnecessary if a less simple but more accurate model were constructed 

to account for such effects as wave propagation and dissipation. 
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NOMENCLATURE 

F(t) force applied to ma« 

Fm peak force 

kl ' k2 spring constants 

m. ,  my lumped masses 

P pressure 

t time 

xl'  x2 mass oi^placements 

c strain 

: 
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SECTION   VIII 

DEPENDENCE OF DAMAGE ON PULSE SHAPES 

1. Introduction 

In this section a comparison is n.^de of the permanent deforma- 

tions of simple rigid-plastic structures caused by pulset  of equal peaU 

pressure and impulse.    It is proved that for a class of simple rigid- 

plastic structures the rectangular pulse causes the greatest damage 

(defined as maximum permanent deformation).    Some illustrative 

examples are given. 

2.        Simplest Rigid-Plastic System 

The dependence on the pulse shape of the maximum displacement 

in the following system will be found.    Consider a pulse   p(t)   acting on 

a mass   m   per unit area having a constant resisting pressure   p 

(Fig.  8. 1).    Whenever   p(t)   becomes larger than   p     the mass is set 

in motion,  this motion being governed by the equation 

P(t) p      =   mx 
8 

(8.1) 

where   x   is the displacement from the initial at rest position.    Dots 

denote differentiation with respect to time. 

pit) 

D * 

FIG. 8.1    SIMPLEST  RIGID-PLASTIC SYSTEM 
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With the initial conditions   x(0) = x(0) = 0   successive integrations 

of (8.1) yield 

I(t) - p t   =   mx 

A(t) - p8t   IZ   =   mx 

(8.2) 

(8   3) 

In (8.2),    I(t)   ia the impulse at time   t   (area under pressure-time 

diagram at time   t) and in (8. 3),    A(t)   is the area under the impulse- 

time diagram at time   t .    Although it is not necessary,   it is convenient 

to consider pulses with an initial value greater than   p    ,   i.e.,    p(0) > pg. 

Let the mass come to rest at time   t = tf .    Then,   (b. 2) with 

x(t,) = 0   gives   t- = If/p     where   I. = I(tf).    Substituting this value of 

t-  in (8. 3) gives the final displacement in the form 

mx.  = A, - i; t,/2   = A. - Lt./2 
f f     * s f f      f f 

(8.4) 

in which   Af = A(tf) . 

By means of expression (8. 4) rhe values of  xf   from pulses of 

equal peak pressure   p      and impulse   I     are compared to that from 

a rectangular pulse of pressure   p      and impulse   I    .    To clarify the 

difference between   I     and   I, .   they are dei'med by 
tf 

p(t)dt    and      \  u\   P^)01 

o 

Two cases immediately arise depending on whether   I    = 1^   or 

/- 

lo>li' 

(1)       Case  1 1    " l
( o       f 

In this case the whole of the pulse is applied before motion 

ceases.    If the pulse ends at time   t = to , then   to < t{ .    Since 
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t, = I./p    = I   /p    ,  the duration of motion is the same for all pulses. 
i        i      s        o      s 2 

It also follows that the term   Iftf/2 = I   /2p    (Iftf/2   appears in (8. 4)) 

is the same for all pulses.    It therefore remains to study   A, in (8.4). 

Let   t' be the duration of a rectangular pulse so that   t' = I   /p    .    Now 

Kt) =   /    P(T)d 

o    m 

T s p   t       (equality for rectangular pulse 
m only) 

so that 

A(t) 

t < t 

= /    I(T)d Ttp    ill (equality for rectangular pulse 
m only) 

Also 

Kt) 

t>t. 

= /     p(T)d T « L 

so that 

A(t) 

t>t' t' t>t/ 

0 o o 

=     /    I(T)dT   =    /     I(T)d't  + /       !(• T)dT < p   t'/Z + I (t-t') rm o o'     o' 

or 

*w ^o^ + v'-»;) 

(8.5) 

The equality in (8. 5) holds only for a rectangular pulse and therefore 

A,   is a maximum for a rectangular pulse.    It was shown earlier that the 

term   Ift,/2   is the same for all pulses of this case.    Hence,  from (8.4) 

the maximum permanent displacement occurs when the pulse is rectan- 

gular. 
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FIG. 8.2   IMPULSE-TIME  DIAGRAM — 
CASE  1 

This result may be illustrated 

in the impulse-time plane of Fig.  8.Z. 

A,   for a rectangular pulse is the area 

under   OU'F.   whereas for all other 

pulses   A,   is the area under the 

curve   OO,   and line O.F. .    The 

triangular area under OF. is   l.t.lZ. 

Thus the final displacement   x     is 

proportional to the difference of these 

areas and is shown shaded in Fig.  8.2. 

The maximum slope of the curve OO, 

is that of OO',  i.e.,  p     , and OO. m 1 
lies wholly in the triangle OO'F, the area of which represents   xf   when 

the pulse is rectangular.    Note that the slope of OF, is   p    .    If the curve 

OO,   intersects  OF,  the mass comes to rest (see case 2 below). 

(2)      Case 2 h*1. 
In thio case pressure is still being applied when motion 

ceases.    Since   t, = I-/p   < I  /p   .,  the values of  t. , unlike case 1, i       i     s        o     s I 
depend on the pulse and are all less than the value of   t,   in case 1. 

However,  the reasoning of case 1 applies leading to the rectangular 

pulse giving the maximum displacement.    Expression (8.5) becomes 

an inequality for   Ir < I     sind  A. - p tf /2   in (8. 3) is less than the 

value corresponding to a rectangular pulse at the same time   t = t.. . 

An illustration of this result can be seen in the impulse- 

time diagram of Fig.   8. 3.    Since   L/t- = p     the point   F-   lies on the 

line  OF,  of Fig.  8.2.    The area under the curve  OF2   is   A,  and the 

triangular area under the straight line   OF2   is   Iftf/2 .    Their difference, 

shown shaded in Fig.  8. 3,  is proportional to the displacement   x   .    The 

shaded area is less than the area of triangle OO'F, which is proportional 

to the displacement   x.   from a rectangular pulse. 
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Frou: the above,   the following 

theorem may be stated.    Theorem: 

Among all pulses of equal peak pres 

sures and impulse th? rectangular 

pulse causes the maximum perma- 

nent deformation of a rigid-plastic 

structure that is representable by a 

mass with a constant resisting force. 

The above proof can readily be 

modified to include certain pathologi- 

cal pulses such as double pulses.    It 

is believed that the theorem can be generalized to include rigid-plastic 

structures with more complicated representations or modes of defor- 

mation.    This is illustrated later foi the case of a beam subjected to 

uniform blast loading. 

FIG. 8.3   IMPULSE-TIME  DIAGRAM — 
CASE 2 

A few examples illustrating the a pplicability of the above 

theorem follow immediately. 

3.        Rigid-Plastic Cylinder 

Assuming that the cylinder remains stable [ 1.9] the equation of 

motion when a pulse   p(t)   is applied uniformly around the circumference 

is 

p(t) - 0   h/a   =   mw (8.6) 

where   0     is the yield stress,    m   the mass per unit length of circum- 

ference,    h   the thickness,    a   the radius, and   w   is the inward dis- 

placement.    Dots denote differentiation with respect to time.    The static 

collapse pressure is   p   = ah/a   and is regarded as the constant 

resisting pressure,  so (8. 7) may be written in the form 

P(t) - p. =   mw (8.7) 
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Two integrations of (8. 7) then give 

mwf   =   A£ - patf /2 (8.8) 

zed (8. 8) is the eair.e result as (8. 3). 

Consequently,  the maximum permanent deformation occurs when 
the pulse is rectangular. 

4,        Simply Supported Circular Plate 

A simply supported circular plate of radius   R   is subjected to 

a pulse   p(t)   uniformly distributed over a central circular area of 

radius   a  .    This is the problem of Section IV and from Eq.  (4. 10) 

the final central deflection is given by 

mwf   ■   (12M0/pgR2)(Af-pgt^/2) (8.9) 

Equation (8. 9) is the same as (8. 3) so that the rectangular pulse 

causes the greatest central deflection (p   is given by (4. 6)). 

5.        Rigid-Plastic Beams 

Consider the clamped beam problem of Section III in which a blast 

pulse is applied uniformly over a central part of the span. The equation 

of motion governing deformation by mechanism 1 is 

myo  =350(l-50/2)lp(t)-p8] (8. 10) 

in which   yo   is the central deflection,    §    ■ a/t , where   a   is the 

loaded length of the half-span   I (see Fig.  3. 1),    m   is the mass per 

unit length,  and   p     is the static collapse pressure given by formula 

(3.4), and the dots denote differentiation with respect to time. 
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Two integrations of (8, 10) givi the final central deflection in 
the form 

myf  =  3?o(l-§o/2)(Af .pgtf
Z/2) (8.11) 

Equations (8. 10) and (8. 11) are similar to (8. 1) and (8. 3),  and by 

applying the theorem it can be stated that a rectangular pulse causes 

the greatest damage.    This result is confirmed by the results of 

Section III in which the central deformations due to a rectangular,  trian- 

gular,  and exponential pulses are compared. 

6.        Rigid-Plastic Beam with Moving Hinges 

As an example of a structure which dots not quite have the 

representation or action called for in the theorem,  a simply supported 

beam subjected to a blast pulse uniformly distributed along the entire 

span is considered.    It is shown that among all pulses with the same 

peak pressure and impulse the rectangular pulse causes the greatest 

damage.    This is an indication that the theorem can be generalized. 

The deformations for this problem have been found by Symonds 

[ 8. l] and when not derived the required results will be extracted from 
this reference. 

For peak pressures (assumed to occur immediately at time 

t = 0 (Fig.  5. 1)) greater than some value   Pj   to be determined, the 

beam deforms by mechanism 2 in which two hinges form immediately 

and travel towards   midspan.     From the equation of motion and the 

continuity of velocity condition it can be shown that the location of the 

moving hinges is given by 

z„   =   6M t/I o o (8. 12) 

■ 

where   zo = L - xo (Fig.  8.4),    Mo   is the fully plastic moment, and   I 

is the impulse per unit length at time   t . 
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From (8. 12) the initial position of the 

hinge in   0 £ x  &   L   is given by 

zlo)   =   6M  /p o1 o rm (8.13) 

FIG. 8.4   BEAM PROBLEM 

^ From (8. 13) the smallest value of 

L p      for which traveling hinges occur is 

obtained by setting   z  (o) = L .    Let this 

*' lower bound of   p      be   p. .    Then rm rl 

Pj =  6Mo/L2  = 3pg (8. 14) 

where   p     is the static collapse pressure. 

Whenever   p     'p.   the beam deforms in mechanism 1 with a 
m        i 

stationary hinge at the center and the theorem can be applied directly. 

Consideration is given here to the cases   p     > p.   because the theorem 

cannot be applied directly. 

Let the moving hinges meet at   midspan at time   t = t. .    Then 

from (8. 12) and (8. 14) 

., ■ I/P, (8.15) 

Two cases are now considered.    In the first the pulse ends at 

a time   t = t     which is less than the time   t = t.t that is,  the whole o 1 
of the pulse has been delivered in phase 1,  while the beam is deforming 

by mechanism 2.    In the second the pulse extends into phase 2.    This 

second case may be subdivided into two cases depending on whether or 

not the pulse has been delivered before motion ceases. 

(1)       Case 1;   Pulse ending in phase 1,   t    < t. 

In this case the central deflection and central velocity at 

time   t = t.   are 

^^l' = Ai/m    and    VQ^V  = V™ 
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when»   I     is the total impulse and   A.    is the area under the impulse- 

time diagram at time   t = t. .    Since   I     is the same for all pulses and 

A.    is a maximum for rectangular pulses (see proof of theorem) phase Z 

has with the r.ame initial velocity for all pulses but has a maximum 

Initial deflection when the pulse is rectangular.    Hence the rectangular 

pulse gives the maximum final deflection. 

The expression giving the final displacement is readily 

found to be 

myo(t2) =  (3A2-A1)/2 - Io(3t2 -1^/4 (8. 16) 

where t, = 31  /p. = 3t,   is the time when motion ceases. c o     i l 

(2)       Case 2a:   Pulse ending in phase 2,    t. < t   < t. 

During the time   t^ < t < t     the equation of motion is 

myo   =   (3p - p1)/2   =   3(p - og)/2 (8. 17) 

Noting that   my  (t.) = Ij   and   t. = I./p     from (8. 15) one integration 

of (8. 17) gives 

myo   =   (31 - p1t)/2 
tl<t<to       <8'I8> 

Noting that   myo(t.) = A.   a further integration gives 

myo =   (3A-A1)/2 -p1(t2-tj)/4 tl<t<to       (8-19) 

During the time   t    < t < t2 (t2   is the time when motion 

ceases) the equation of motion is 

myo   =   -Pj/2 (8.20) 
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Making use of the continuity of velocity and displacement at time 

t = t     and hem o 
of (8.20) yield 

t = t     and hence making use of (8. 18) and (8. 19) successive integrations 
o 

"*o   '   <3lo - Plt)/2 t    < t < t,      (8.21) o c 

.2    1. 
myo   =   (3A - A1)/2 - p^t   -tp/4 'o < ' < ^     <8-22) 

From (8.21) motion ceases at time   t = t,   given by 

3I«/P. (8.23) 
•2   "   'V*-! 

and from (8.22) and (8.23) the displacement at time   t = t_   is given by 

myo(t2)   =   (3A2 ~ Ajll - (31^ - IjtjJM (8.24) 

Before discussing expressions (8. 16) and (8.24) that for 

case 2b will be derived. 

(3)      Case 2b;   Pulse ending after motion ceases,    t- < t 

During the whole of phase 2 the equation of motion is (8. 17) 

and the initial displacement and velocity are those of case 2a.    Hence 

the expression for the final deflection is,  from (8. 19) 

myo   =   (3A2 - A1)/2 - p^t^ - t\)H (8.25) 

where,  from (8. 18), 

t2   =   3l2/p1 (8.26) 

Using the result (8. 26) for   t2 ,   (8.26) may be written in 

the form 

myo   =   (3A2 -Aj)^ - (31^ - 1^)74 (8.27) 

A comparison is now made of expressions (8. 16),   (8.24) 

and (8.27) by means of geometrical considerations in the impulse-time 
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planes of Fig.   8. 5(a),   (b) and (c).    For this purpose it is convenient to 

rearrange (8. 16),   (8.24) and (8.27) into the forms 

mjty = ^z-l0
tzn^^Az'1otZn) - (A1-I0t1/2)]/2 (8..'.) 

myo(t2) = (A2-Iot2/2) + [(A2-Iot2/2) - {Arlltl/Z)]/Z (8.24) 

myo(t2) = (A2-I2t2/2) + [(A^I^/2) - (Aj - Ijtj/2)]/2 (8.27) 

One important feature of the 

diagrams is that the lines   OR,  OP, 

and OF are the same in each.    OR 

is the path that is taken by a rectan- 

gular pulse and has a slope equal to 

the pressure   p OP has a slope 
.   2     m 

p. = 6M  /L     and   OF has a slope 
/   2 

Pg = 2Mo/L   = Pj/3 .    Three typical 

pulse paths   OM are shown,   one in 

each of cases 1, 2a, and 2b. 

By algebraically adding the 

areas represented by the individual 

terms in each of (8. 16),   (8.24), and 

(8. 27),it can be seen that each sum 

is bounded by that for a rectangular 

pulse,  this sum being the triangle 

ORF plus one-half of triangle OPF. 

Thus the rectangular pulse causes 

the greatest deflection. 
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mum mm 

NOMENCLATURE 

a 

A 

Ar A2, Ai 
h 

I(t) 

lo 

h' h'  h 
I.  L 

m 

Mo 
P 

Pm 

P. 

Pi 
R 

t 

t 

o 
w 

X 

'o 

radius of cylinder,  half load length on beam 

area under impulse-time curve 

Aitj).  A(t2).  A(tf) 

thickness of cylinder 

impulse (area under pressure-time curve) 

total impulse 

Ktj). i(t2). i(tf) 

half span of beam 

mass 

fully plastic moment 

pressure 

peak pressure 

static collapse pressure 

mechanism bound on   p      for beams 

radius of plate 

time 

pulse duration 

time at end of phase 1 

time at end of phase 2 

time when motion ceases 

duration of rectangular pulse 

displacement of cylinder or plate 

displacement at time   t = t, .   w(tJ 

displacement of mass 

final displacement x(t.) 

coordinate of moving hinge 

central d' flection of beam 

final central deflection of beam   y^tj) 

L - x 
o 

a/{,   (a is half load length on beam) 

yield stress 
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APPENDIX   A 

FORMULAS FOR THE CENTRAL DEFLECTION OF A 
CLAMPED BEAM DUE TO RECTANGULAR, 
TRIANGULAR AND EXPONENTIAL PULSES 

In the following, the central deflection   6   is in nondimemional 

form and denoted by   v  where   v  =  6mM  lv,l    .    The nutation is that o    i 
of Section HI. 

A.        Rectangular Pulse 

(1)       Mechanism 1 

3. 

v =   3?^   -50)2(V- -1)/16\ 

(2)      Mechanism 2a and 3a 

v =   ?  (2-5 J(2K-1)/8X - 1/12 o o 

(3)      Mechanism 2b 

v  =   (50/6)I(2-50)/(2-?o-5oX) + 2inj(2\/3)/(2-?o-^oX 

(4)      Mechanism Tb 

v =   (?*/12)l5--Un(2?o) -3(2-?o)/2\?o] 

^+2] 

Triangular Pulse 

(1)       1   «   \   «  2 0 «   5    «  1 

v =   ?o(2-?0)2a-l)3/X4 

(2)       2  s   X   i   X, 0  « 5     «  1 o 

=   ?!(2-§J2(3X-4)/16X 
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(3) Xj  s X  s  Z\l ?o   .   1/2 

v = i^ft-c^csx-^/isx 

M2-eo)(2+3?2.6?oK?b/3X)[1.3?o(2-?o)/(6?o.3§2.2)] 

(4)       X  * 2X 1 C01   1/2 

v =   ?0(--?0){3X-2)/12X - 1/2 

(5;       X  ^ 2X. L  ^   1/2 

v  =   (?o/12)[5-4tn{2?o)]   - §o(2 - ?o)Mx 

For the other regions of the failure mechanism diagram 
the function   $ is introduced. 

3 
i    .i. 

where 

*  =   c lY aiCb^-bj) + 64^ c^n (bj/l^) 
i=l 

- 32[6 + ?oX/(2-§o)] 

= -12.§oX/(2.?o) 

= 1/3 

= 8 + 50X(2-T2)/(2.§O) 

■ 8 + ?oX(2 - T1)/(2-?o) 

= (8/3?2)[(2.5o)/x]4 

= 8 + 2§oX/(2-?o) 
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(6) 

where 

Xj « X « z\l 

Xj S X ^  x2 

0  s  ?     i ?./5 

2/5  *  ?0   *   1/2 

V   ♦ + ?o (2 - V2 (n - 4)/ 16X - Tl ?o (2 " 5o)2(3X " 3 " V)/^2 

T,    =   2[l-3(2.?o)/X(2-3?o)] 

T2     =    0 

(7)       2X1   i   X   « X2 ?o s 2/5 

v =   * + ?o/3 + (?2/3Rn[2X/(12-650 + 3?oX)] 

Tl=   i 

T2=   0 

(8)       X2   « X  « 2X2 

2XJ  s X   s 2X2 

0  s.  5     s 2/5 
o 

2/5  s  5     s   1/2 

where 

(9) 

where 

v  =   * +  (?o/3Rn[2X/(12 - 65o + 3?oX )] 

+ ?oT2(2 " ?o)(3 " T2,/6X + 3?o(2 " ?o)2/16 

-3Tl?o(2 -?0)2<X-T1)/4X2 

TJ   =   X(2 -3?o)/6(2 - ?o) 

=   2[ 1 - 3(2 - ?  )/?  X] 

\     s \   s 2X2 2/5  *  §o  s   1/2 

V ■   $ + 5OT2(2 -?O)(3-T2)/6\ +?2(2.?o)2(3X-2)/8X 

" ?o Tl <2 " ?o)2 (3 " T1)/4K " 35o (2 " §o)2 (K2 " 4T1)/ 16X2 

,   =   2[l -3(2 -?o)/X(2 -35o)] 

2   =   2[l -3(2 -50)/?0X] 
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C.       Exponential Pulse 

(1)      Mechanism 1 

v =   (2 -s/^/ib^ZMTf + e"7'- 1) - Tf
2] 

where 
-T- 

T,   =   X(l-e    *) 

(2)      Mechanism 2a  and 3a 

v =   (2 - ?0)(§0/4X)(T1 +e     '-l) 

+ (2-?o)2(3?2/16x2)[2X(T£ + e"l£-T1-e"Tl).Tf + Tf] 

where T, is that of mechanism 1 and 

f,   =   X(650-3?2 .2)(1 -e  Tl)/3?o(2 - f J 

(3)       Mechanism 2b 

v =   (2 - ?o)2 (?^/3) 

■ 

(l-e"T)2dT 

^^o^ + C^1-6     > 

+ (2-50)2(3?2/l6X2)[2X{tf + e"Tf.T1-e"Tl) - T2 + T2 ] 

where T,   is that of mechanism 1 and 

Tj   =   M2 -350)(1 -e   Tl)/3(2 -§o) 

(4)       Mechanism 3b 

v =   (2-§o)(?^/3) (l-e"T)2dT           

V-V^^ui-O 
2.,.2,,,,2. + 50{2-§0)(T2+e    c-l)/4X + (2-§o)c(3?;/16\')[2).(Tf+e 

-T. 

-T 
-T.  -e li        2 J    2! 

)-Tf   +TJ] 
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where   T.   is that of mechanism 1,    T,    is that of mechanism 2b and 

T2   =   Som-e  T2)/3(2-?o) 
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APPENDIX   B 

FORMULAS FOR THE FINAL DEFORMED SHAPE OF A 
CLAMPED BEAM DUE TO A RECTANGULAR PULSE 

In the following,  the deflection   y   is in nondimensional form 

and denoted by   w   where   w = ymM  /lil     and   ? = x/t .    The notation 

is that of Section III. 

A. Mechanism 1 

w   =   35^(1 -?)(2 -?0)2(\ - 1)/16\ 

B.        Mechanism 2a 

v,   =   {l-?)(2 + ?)/12- (l-50)2/4 - 50(2-5o)/8X 

w   =   (l-?)[(?0/8X)(2-eo)/(l-§2) + §2/6+ 1/12] 

where   ?2   is given by 

0 M * ?2 

{l-?2)2   =  3?o(2-?o)/X+3(l.?o)2 

C.        Mechanism 2b 

w   =   (?2/3^1)(?1-§)[3(2-§o)/4X?1 + 1]  - (?2/3)tn5        Os   S^^j 

y   =   {?0/3Rn(l/?) 

where 

e>l   =   S|o/l + 3(2 - ?o)/2\ 

§! *5 s 1 
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D.       Mechanism 3A 

w   =   (l-?)(2 + 5)/12 - (l-?0f/4-^o(2-?o)/8X 0*5   * ?■ 

w   =   (l-?)(4?0-l)/12 + (5o-?)(2-35o+5)/24 

+ (l-?0)2/24 + ?o(2-?o)/8X 

v   '   (50/
8X><2-?o,(52-?)/(?l-?2, 

+ (l-5)(450-?1)/l2 + (l-50)(l-51)/8 

?,  s ? *   ?; 

u«§«c, 

w   =   (l-?)(8§o-?-l)/24 ?!*?*! 

where 

«1   "   ?o + [3V2-5o^J 

52   =   ?o-l3?o<2-?o)A] 
i 

?, a 
^o"1 

E.       Mechanism 3b 

*   =   (?o/12)[5-3)(2-§o)/2?oX-tn(2?o)] 

- ?(2?0-5)/12 0 * § * §. 

w   ■   i§0/
8X)(2"?o,(?2-5)/(?l-?2, + (?o/24)l9-<Jtn(2?o) 

+ 25J/5J - 5(?2 + 2?o)/l2 

w   =   (50-?)(7?o-?)/24 + (?;/24)l5.8tn(2?o)] 

«   =   {§;/3Hn(l/5) ?!   «««1 

where §. and ?, are t*108* o* mechanism 3a and ?. = 25 
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layers of different materials such as styrofoam, polyurethane, and Mylar, and by 
sending the explosively-induced shock wave through them to the target. The 
search for pulse shapes was mainly confined to those of the blast type by the 
generation of other types is equally feasible. Outlines of the theoretical 
treatments of four problems are given. They concern the responses of (a) a 
clamped beam to a blast pulse uniformly distributed over a central length, (b) a 
simply supported circular plate to a blast pulse uniformly distributed over a 
central circular area, (c) a clamped circular plate to a rectangular pulse uni- 
formly distributed over the whole plate, and (d) a clamped circular plate to a 
rectangular pulse uniformly distributed over a central circular area. Analytical 
treatments employ the rigid-plastic theory becausü of Interest in moderately 
large permanent deformations and relative simplicity of analysis. 
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